Projective Splitting as a Warped Proximal Algorithm

Minh N. Bùi
North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA
mnbui@ncsu.edu

Abstract

We show that the asynchronous block-iterative primal-dual projective splitting framework introduced by P. L. Combettes and J. Eckstein in their 2018 Math. Program. paper can be viewed as an instantiation of the recently proposed warped proximal algorithm.

Keywords. Warped proximal algorithm, projective splitting, primal-dual algorithm, splitting algorithm, monotone inclusion, monotone operator.

In [4], the warped proximal algorithm was proposed and its pertinence was illustrated through the ability to unify existing methods such as those of $[1,6,10,11]$, and to design novel flexible algorithms for solving challenging monotone inclusions. Let us state a version of [4, Theorem 4.2].

Proposition 1 Let \mathbf{H} be a real Hilbert space, let $\mathbf{M}: \mathbf{H} \rightarrow 2^{\mathbf{H}}$ be a maximally monotone operator such that $\operatorname{zer} \mathbf{M} \neq \varnothing$, let $\mathbf{x}_{0} \in \mathbf{H}$, let $\left.\varepsilon \in\right] 0,1[$, let $\alpha \in] 0,+\infty[$, and let $\beta \in[\alpha,+\infty[$. For every $n \in \mathbb{N}$, let $\mathbf{K}_{n}: \mathbf{H} \rightarrow \mathbf{H}$ be α-strongly monotone and β-Lipschitzian, and let $\lambda_{n} \in[\varepsilon, 2-\varepsilon]$. Iterate

$$
\begin{align*}
& \text { for } n=0,1, \ldots \\
& \qquad \begin{array}{l}
\text { take } \widetilde{\mathbf{x}}_{n} \in \mathbf{H} \\
\mathbf{y}_{n}=\left(\mathbf{K}_{n}+\mathbf{M}\right)^{-1}\left(\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n}\right) \\
\mathbf{y}_{n}^{*}=\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n}-\mathbf{K}_{n} \mathbf{y}_{n} \\
i f\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle>0 \\
\left\lfloor\begin{array}{l}
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\frac{\lambda_{n}\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle}{\left\|\mathbf{y}_{n}^{*}\right\|^{2}} \mathbf{y}_{n}^{*} \\
\text { else } \\
\left\lfloor\mathbf{x}_{n+1}=\mathbf{x}_{n} .\right.
\end{array}\right.
\end{array} . \begin{array}{l}
\text {. }
\end{array}{ }^{2} .
\end{align*}
$$

Then the following hold:
(i) $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ is bounded.
(ii) $\sum_{n \in \mathbb{N}}\left\|\mathbf{x}_{n+1}-\mathbf{x}_{n}\right\|^{2}<+\infty$.
(iii) $(\forall n \in \mathbb{N})\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \leqslant \varepsilon^{-1}\left\|\mathbf{y}_{n}^{*}\right\|\left\|\mathbf{x}_{n+1}-\mathbf{x}_{n}\right\|$.
(iv) Suppose that $\widetilde{\mathbf{x}}_{n}-\mathbf{x}_{n} \rightarrow \mathbf{0}$. Then $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in zer \mathbf{M}.

Proof. We deduce from [4, Proposition 3.9(i) [d]\&(ii) [b]] that (1) is a special case of [4, Eq. (4.5)].
(i): An inspection of the proof of [4, Theorem 4.2] reveals that $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to zer \mathbf{M}, that is, $(\forall \mathbf{z} \in \operatorname{zer} \mathbf{M})(\forall n \in \mathbb{N})\left\|\mathbf{x}_{n+1}-\mathbf{z}\right\| \leqslant\left\|\mathbf{x}_{n}-\mathbf{z}\right\|$. Therefore, the boundedness of $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ follows from [3, Proposition 5.4(i)].
(ii): [4, Theorem 4.2(i)].
(iii): [4, Eqs. (4.8), (4.9), and (4.4)].
(iv): Combine [4, Theorem 4.2(ii)] and [4, Remark 4.3].

A problem of interest in modern nonlinear analysis is the following (see, e.g., [1, 5, 6, 7] and the references therein for discussions on this problem).

Problem 2 Let $\left(\mathcal{H}_{i}\right)_{i \in I}$ and $\left(\mathcal{G}_{k}\right)_{k \in K}$ be finite families of real Hilbert spaces. For every $i \in I$ and every $k \in K$, let $A_{i}: \mathcal{H}_{i} \rightarrow 2^{\mathcal{H}_{i}}$ and $B_{k}: \mathcal{G}_{k} \rightarrow 2^{\mathcal{G}_{k}}$ be maximally monotone, let $z_{i}^{*} \in \mathcal{H}_{i}$, let $r_{k} \in \mathcal{G}_{k}$, and let $L_{k, i}: \mathcal{H}_{i} \rightarrow \mathcal{G}_{k}$ be linear and bounded. The problem is to

$$
\text { find }\left(\bar{x}_{i}\right)_{i \in I} \in \underset{i \in I}{\times} \mathcal{H}_{i} \text { and }\left(\bar{v}_{k}^{*}\right)_{k \in K} \in \underset{k \in K}{\times} \mathcal{G}_{k} \text { such that }\left\{\begin{array}{l}
(\forall i \in I) z_{i}^{*}-\sum_{k \in K} L_{k, i}^{*} \bar{v}_{k}^{*} \in A_{i} \bar{x}_{i} \tag{2}\\
(\forall k \in K) \sum_{i \in I} L_{k, i} \bar{x}_{i}-r_{k} \in B_{k}^{-1} \bar{v}_{k}^{*} .
\end{array}\right.
$$

The set of solutions to (2) is denoted by \mathbf{Z}.
The first asynchronous block-iterative algorithm to solve Problem 2 was proposed in [7, Algorithm 12] as an extension of the projective splitting techniques found in [1, 8]. The goal of this short note is to interpret these projective splitting frameworks in simple terms as warped proximal iterations. More precisely, we show that [7, Algorithm 12] can be viewed as an instantiation of (1). To this end, we first derive an abstract weak convergence principle from Proposition 1. (We refer the reader to [3] for background on monotone operator theory and nonlinear analysis.)

Theorem $\mathbf{3}$ Let \mathbf{H} be a real Hilbert space, let $\mathbf{A}: \mathbf{H} \rightarrow 2^{\mathbf{H}}$ be a maximally monotone operator, and let $\mathbf{S}: \mathbf{H} \rightarrow \mathbf{H}$ be a bounded linear operator such that $\mathbf{S}^{*}=-\mathbf{S}$. In addition, let $\mathbf{x}_{0} \in \mathbf{H}$, let $\left.\varepsilon \in\right] 0,1[$, let $\alpha \in] 0,+\infty\left[\right.$, let $\rho \in\left[\alpha,+\infty\left[\right.\right.$, and for every $n \in \mathbb{N}$, let $\mathbf{F}_{n}: \mathbf{H} \rightarrow \mathbf{H}$ be α-strongly monotone and ρ-Lipschitzian, and let $\lambda_{n} \in[\varepsilon, 2-\varepsilon]$. Iterate

$$
\begin{align*}
& \text { for } n=0,1, \ldots \\
& \text { take } \mathbf{u}_{n} \in \mathbf{H}, \mathbf{e}_{n}^{*} \in \mathbf{H} \text {, and } \mathbf{f}_{n}^{*} \in \mathbf{H} \\
& \mathbf{u}_{n}^{*}=\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{S} \mathbf{u}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*} \\
& \mathbf{y}_{n}=\left(\mathbf{F}_{n}+\mathbf{A}\right)^{-1} \mathbf{u}_{n}^{*} \\
& \mathbf{a}_{n}^{*}=\mathbf{u}_{n}^{*}-\mathbf{F}_{n} \mathbf{y}_{n} \\
& \mathbf{y}_{n}^{*}=\mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{y}_{n} \\
& \pi_{n}=\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle-\left\langle\mathbf{y}_{n} \mid \mathbf{a}_{n}^{*}\right\rangle \tag{3}\\
& \text { if } \pi_{n}>0 \\
& \tau_{n}=\left\|\mathbf{y}_{n}^{*}\right\|^{2} \\
& \theta_{n}=\lambda_{n} \pi_{n} / \tau_{n} \\
& \mathbf{x}_{n+1}=\mathbf{x}_{n}-\theta_{n} \mathbf{y}_{n}^{*} \\
& \text { else } \\
& \mathbf{x}_{n+1}=\mathbf{x}_{n} .
\end{align*}
$$

Suppose that $\operatorname{zer}(\mathbf{A}+\mathbf{S}) \neq \varnothing$. Then the following hold:
(i) $\sum_{n \in \mathbb{N}}\left\|\mathbf{x}_{n+1}-\mathbf{x}_{n}\right\|^{2}<+\infty$.
(ii) Suppose that $\mathbf{u}_{n}-\mathbf{x}_{n} \rightarrow \mathbf{0}$, that $\mathbf{e}_{n}^{*} \rightarrow \mathbf{0}$, that $\left(\mathbf{f}_{n}^{*}\right)_{n \in \mathbb{N}}$ is bounded, and that there exists $\left.\delta \in\right] 0,1[$ such that

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{f}_{n}^{*}\right\rangle \geqslant-\delta\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}\right\rangle \tag{4}\\
\left\langle\mathbf{a}_{n}^{*}+\mathbf{S u}_{n}-\mathbf{e}_{n}^{*} \mid \mathbf{f}_{n}^{*}\right\rangle \leqslant \delta\left\|\mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{u}_{n}-\mathbf{e}_{n}^{*}\right\|^{2} .
\end{array}\right.
$$

Then $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in $\operatorname{zer}(\mathbf{A}+\mathbf{S})$.

Proof. Set $\mathbf{M}=\mathbf{A}+\mathbf{S}$ and $(\forall n \in \mathbb{N}) \mathbf{K}_{n}=\mathbf{F}_{n}-\mathbf{S}$. Then, it follows from [3, Example 20.35 and Corollary $25.5(\mathrm{i})]$ that \mathbf{M} is maximally monotone with zer $\mathbf{M} \neq \varnothing$. Now take $n \in \mathbb{N}$. We have

$$
\begin{equation*}
\mathbf{K}_{n}+\mathbf{M}=\mathbf{F}_{n}+\mathbf{A} \tag{5}
\end{equation*}
$$

Since $\mathbf{S}^{*}=-\mathbf{S}$, we deduce that
\mathbf{K}_{n} is α-strongly monotone and β-Lipschitzian,
where $\beta=\rho+\|\mathbf{S}\|$. Thus, [3, Corollary 20.28 and Proposition 22.11(ii)] guarantee that there exists $\widetilde{\mathbf{x}}_{n} \in \mathbf{H}$ such that

$$
\begin{equation*}
\mathbf{u}_{n}^{*}=\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n} \tag{7}
\end{equation*}
$$

Hence, by (3) and (5),

$$
\begin{equation*}
\mathbf{y}_{n}=\left(\mathbf{K}_{n}+\mathbf{M}\right)^{-1}\left(\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n}\right) \quad \text { and } \quad \mathbf{y}_{n}^{*}=\mathbf{u}_{n}^{*}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{S} \mathbf{y}_{n}=\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n}-\mathbf{K}_{n} \mathbf{y}_{n} \tag{8}
\end{equation*}
$$

At the same time, we have $\left\langle\mathbf{y}_{n} \mid \mathbf{S} \mathbf{y}_{n}\right\rangle=0$ and it thus results from (3) that

$$
\begin{equation*}
\pi_{n}=\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle-\left\langle\mathbf{y}_{n} \mid \mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{y}_{n}\right\rangle=\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \tag{9}
\end{equation*}
$$

Altogether, (3) is a special case of (1).
(i): Proposition 1 (ii).
(ii): In the light of Proposition 1(iv), it suffices to verify that $\widetilde{\mathbf{x}}_{n}-\mathbf{x}_{n} \rightarrow \mathbf{0}$. For every $n \in \mathbb{N}$, since $\mathbf{K}_{n}+\mathbf{M}$ is maximally monotone [3, Corollary 25.5(i)] and α-strongly monotone, [3, Example 22.7 and Proposition 22.11 (ii)] implies that $\left(\mathbf{K}_{n}+\mathbf{M}\right)^{-1}: \mathbf{H} \rightarrow \mathbf{H}$ is $(1 / \alpha)$-Lipschitzian. Therefore, we derive from (3), (5), [4, Proposition 3.10(i)], and (6) that ($\forall \mathbf{z} \in \operatorname{zer} \mathbf{M})(\forall n \in \mathbb{N}) \alpha\left\|\mathbf{y}_{n}-\mathbf{z}\right\|=$ $\alpha\left\|\left(\mathbf{K}_{n}+\mathbf{M}\right)^{-1} \mathbf{u}_{n}^{*}-\left(\mathbf{K}_{n}+\mathbf{M}\right)^{-1}\left(\mathbf{K}_{n} \mathbf{z}\right)\right\| \leqslant\left\|\mathbf{u}_{n}^{*}-\mathbf{K}_{n} \mathbf{z}\right\|=\left\|\mathbf{K}_{n} \mathbf{u}_{n}-\mathbf{K}_{n} \mathbf{z}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*}\right\| \leqslant\left\|\mathbf{K}_{n} \mathbf{u}_{n}-\mathbf{K}_{n} \mathbf{z}\right\|+$ $\left\|\mathbf{e}_{n}^{*}\right\|+\left\|\mathbf{f}_{n}^{*}\right\| \leqslant \beta\left\|\mathbf{u}_{n}-\mathbf{z}\right\|+\left\|\mathbf{e}_{n}^{*}\right\|+\left\|\mathbf{f}_{n}^{*}\right\|$. Thus, since Proposition 1(i) and our assumption imply that $\left(\mathbf{u}_{n}\right)_{n \in \mathbb{N}}$ is bounded, it follows that $\left(\mathbf{y}_{n}\right)_{n \in \mathbb{N}}$ is bounded. At the same time, for every $n \in \mathbb{N}$, we get from (3) that

$$
\begin{equation*}
\mathbf{y}_{n}^{*}=\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*}-\left(\mathbf{S} \mathbf{u}_{n}-\mathbf{S} \mathbf{y}_{n}\right)=\mathbf{K}_{n} \mathbf{u}_{n}-\mathbf{K}_{n} \mathbf{y}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*} \tag{10}
\end{equation*}
$$

and, thus, from (6) that $\left\|\mathbf{y}_{n}^{*}\right\| \leqslant\left\|\mathbf{K}_{n} \mathbf{u}_{n}-\mathbf{K}_{n} \mathbf{y}_{n}\right\|+\left\|\mathbf{e}_{n}^{*}\right\|+\left\|\mathbf{f}_{n}^{*}\right\| \leqslant \beta\left\|\mathbf{u}_{n}-\mathbf{y}_{n}\right\|+\left\|\mathbf{e}_{n}^{*}\right\|+\left\|\mathbf{f}_{n}^{*}\right\|$. Thus, $\left(\mathbf{y}_{n}^{*}\right)_{n \in \mathbb{N}}$ is bounded, from which, (i), and Proposition 1 (iii) we obtain $\overline{\lim }\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \leqslant 0$. In turn, since $\mathbf{x}_{n}-\mathbf{u}_{n} \rightarrow \mathbf{0}$ and $\mathbf{e}_{n}^{*} \rightarrow \mathbf{0}$, it results from (10) and (4) that

$$
\begin{align*}
0 & \geqslant \varlimsup \overline{\lim }\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \\
& =\varlimsup\left(\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle+\left\langle\mathbf{x}_{n}-\mathbf{u}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle\right) \\
& =\overline{\lim }\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \\
& =\varlimsup\left(\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*}\right\rangle-\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{S} \mathbf{u}_{n}-\mathbf{S} \mathbf{y}_{n}\right\rangle\right) \\
& =\varlimsup\left(\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{f}_{n}^{*}\right\rangle+\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{e}_{n}^{*}\right\rangle\right) \\
& \geqslant \overline{\lim }\left((1-\delta)\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}\right\rangle+\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{e}_{n}^{*}\right\rangle\right) \\
& \geqslant \varlimsup \overline{\lim } \alpha(1-\delta)\left\|\mathbf{u}_{n}-\mathbf{y}_{n}\right\|^{2} \\
& \geqslant \overline{\lim } \alpha(1-\delta) \rho^{-2}\left\|\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}\right\|^{2} . \tag{11}
\end{align*}
$$

Hence, $\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n} \rightarrow \mathbf{0}$. On the other hand, since $\left(\mathbf{f}_{n}^{*}\right)_{n \in \mathbb{N}}$ is bounded and since (3) yields $\left(\mathbf{a}_{n}^{*}+\right.$ $\left.\mathbf{S} \mathbf{u}_{n}-\mathbf{e}_{n}^{*}\right)_{n \in \mathbb{N}}=\left(\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{f}_{n}^{*}\right)_{n \in \mathbb{N}}$, we derive from (4) that

$$
\varlimsup \overline{\lim }(1-\delta)\left\|\mathbf{f}_{n}^{*}\right\|^{2}=\varlimsup \overline{\lim }\left(\left\langle\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n} \mid \mathbf{f}_{n}^{*}\right\rangle+(1-\delta)\left\|\mathbf{f}_{n}^{*}\right\|^{2}\right)
$$

$$
\begin{align*}
& =\varlimsup\left(\left\langle\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{f}_{n}^{*} \mid \mathbf{f}_{n}^{*}\right\rangle-\delta\left\|\mathbf{f}_{n}^{*}\right\|^{2}\right) \\
& \leqslant \overline{\lim }\left(\delta\left\|\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}+\mathbf{f}_{n}^{*}\right\|^{2}-\delta\left\|\mathbf{f}_{n}^{*}\right\|^{2}\right) \\
& =\overline{\lim }\left(\delta\left\|\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}\right\|^{2}+2 \delta\left\langle\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n} \mid \mathbf{f}_{n}^{*}\right\rangle\right) \\
& =0 \tag{12}
\end{align*}
$$

Therefore, $\mathbf{f}_{n}^{*} \rightarrow \mathbf{0}$. Consequently, by (6), (7), and (3), $\alpha\left\|\widetilde{\mathbf{x}}_{n}-\mathbf{x}_{n}\right\| \leqslant\left\|\mathbf{K}_{n} \widetilde{\mathbf{x}}_{n}-\mathbf{K}_{n} \mathbf{x}_{n}\right\|=\| \mathbf{K}_{n} \mathbf{u}_{n}-$ $\mathbf{K}_{n} \mathbf{x}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*}\|\leqslant \beta\| \mathbf{u}_{n}-\mathbf{x}_{n}\|+\| \mathbf{e}_{n}^{*}\|+\| \mathbf{f}_{n}^{*} \| \rightarrow 0$.

We are now ready to recover [7, Theorem 13]; see also [7, Remark 4] for comments on the error sequences $\left(e_{i, n}\right)_{n \in \mathbb{N}, i \in I_{n}}$ and $\left(f_{k, n}\right)_{n \in \mathbb{N}, k \in K_{n}}$ in (15). The reader is referred to [7] for discussions on the features of the algorithm (15). Recall that, given a real Hilbert space \mathcal{H} with identity operator Id, the resolvent of an operator $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is $J_{A}=(\operatorname{Id}+A)^{-1}$.

Corollary 4 ([7]) Consider the setting of Problem 2 and suppose that $\mathbf{Z} \neq \varnothing$. Let $\left(I_{n}\right)_{n \in \mathbb{N}}$ be nonempty subsets of I and $\left(K_{n}\right)_{n \in \mathbb{N}}$ be nonempty subsets of K such that

$$
\begin{equation*}
I_{0}=I, \quad K_{0}=K, \quad \text { and } \quad(\exists T \in \mathbb{N})(\forall n \in \mathbb{N}) \quad \bigcup_{j=n}^{n+T} I_{j}=I \text { and } \bigcup_{j=n}^{n+T} K_{j}=K \tag{13}
\end{equation*}
$$

In addition, let $D \in \mathbb{N}$, let $\varepsilon \in] 0,1\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be in $[\varepsilon, 2-\varepsilon]$, and for every $i \in I$ and every $k \in K$, let $\left(c_{i}(n)\right)_{n \in \mathbb{N}}$ and $\left(d_{k}(n)\right)_{n \in \mathbb{N}}$ be in \mathbb{N} such that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad n-D \leqslant c_{i}(n) \leqslant n \quad \text { and } \quad n-D \leqslant d_{k}(n) \leqslant n \tag{14}
\end{equation*}
$$

let $\left(\gamma_{i, n}\right)_{n \in \mathbb{N}}$ and $\left(\mu_{k, n}\right)_{n \in \mathbb{N}}$ be in $[\varepsilon, 1 / \varepsilon]$, let $x_{i, 0} \in \mathcal{H}_{i}$, and let $v_{k, 0}^{*} \in \mathcal{G}_{k}$. Iterate

```
for \(n=0,1, \ldots\)
    for every \(i \in I_{n}\)
        take \(e_{i, n} \in \mathcal{H}_{i}\)
        \(l_{i, n}^{*}=\sum_{k \in K} L_{k, i}^{*} v_{k, c_{i}(n)}^{*}\)
        \(a_{i, n}=J_{\gamma_{i, c_{i}(n)} A_{i}}\left(x_{i, c_{i}(n)}+\gamma_{i, c_{i}(n)}\left(z_{i}^{*}-l_{i, n}^{*}\right)+e_{i, n}\right)\)
        \(a_{i, n}^{*}=\gamma_{i, c_{i}(n)}^{-1}\left(x_{i, c_{i}(n)}-a_{i, n}+e_{i, n}\right)-l_{i, n}^{*}\)
    for every \(i \in I \backslash I_{n}\)
        \(a_{i, n}=a_{i, n-1}\)
\(a_{i, n}^{*}=a_{i, n-1}^{*}\)
    for every \(k \in K_{n}\)
        take \(f_{k, n} \in \mathcal{G}_{k}\)
        \(l_{k, n}=\sum_{i \in I} L_{k, i} x_{i, d_{k}(n)}\)
        \(b_{k, n}=r_{k}+J_{\mu_{k, d_{k}(n)} B_{k}}\left(l_{k, n}+\mu_{k, d_{k}(n)} v_{k, d_{k}(n)}^{*}+f_{k, n}-r_{k}\right)\)
        \(b_{k, n}^{*}=v_{k, d_{k}(n)}^{*}+\mu_{k, d_{k}(n)}^{-1}\left(l_{k, n}-b_{k, n}+f_{k, n}\right)\)
        \(t_{k, n}=b_{k, n}-\sum_{i \in I} L_{k, i} a_{i, n}\)
    for every \(k \in K \backslash K_{n}\)
        \(b_{k, n}=b_{k, n-1}\)
        \(b_{k, n}^{*}=b_{k, n-1}^{*}\)
        \(t_{k, n}=b_{k, n}-\sum_{i \in I} L_{k, i} a_{i, n}\)
    for every \(i \in I\)
        \(t_{i, n}^{*}=a_{i, n}^{*}+\sum_{k \in K} L_{k, i}^{*} b_{k, n}^{*}\)
        \(\pi_{n}=\sum_{i \in I}\left(\left\langle x_{i, n} \mid t_{i, n}^{*}\right\rangle-\left\langle a_{i, n} \mid a_{i, n}^{*}\right\rangle\right)+\sum_{k \in K}\left(\left\langle t_{k, n} \mid v_{k, n}^{*}\right\rangle-\left\langle b_{k, n} \mid b_{k, n}^{*}\right\rangle\right)\)
    if \(\pi_{n}>0\)
        \(\tau_{n}=\sum_{i \in I}\left\|t_{i, n}^{*}\right\|^{2}+\sum_{k \in K}\left\|t_{k, n}\right\|^{2}\)
        \(\theta_{n}=\lambda_{n} \pi_{n} / \tau_{n}\)
    else
        \(\theta_{n}=0\)
    for every \(i \in I\)
        \(x_{i, n+1}=x_{i, n}-\theta_{n} t_{i, n}^{*}\)
    for every \(k \in K\)
        \(v_{k, n+1}^{*}=v_{k, n}^{*}-\theta_{n} t_{k, n}\).
```

In addition, suppose that there exist $\eta \in] 0,+\infty[, \chi \in] 0,+\infty[, \sigma \in] 0,1[$, and $\zeta \in] 0,1[$ such that

$$
(\forall n \in \mathbb{N})\left(\forall i \in I_{n}\right)\left\{\begin{array}{l}
\left\|e_{i, n}\right\| \leqslant \eta \tag{16}\\
\left\langle x_{i, c_{i}(n)}-a_{i, n} \mid e_{i, n}\right\rangle \geqslant-\sigma\left\|x_{i, c_{i}(n)}-a_{i, n}\right\|^{2} \\
\left\langle e_{i, n} \mid a_{i, n}^{*}+l_{i, n}^{*}\right\rangle \leqslant \sigma \gamma_{i, c_{i}(n)}\left\|a_{i, n}^{*}+l_{i, n}^{*}\right\|^{2}
\end{array}\right.
$$

and that

$$
(\forall n \in \mathbb{N})\left(\forall k \in K_{n}\right) \quad\left\{\begin{array}{l}
\left\|f_{k, n}\right\| \leqslant \chi \tag{17}\\
\left\langle l_{k, n}-b_{k, n} \mid f_{k, n}\right\rangle \geqslant-\zeta\left\|l_{k, n}-b_{k, n}\right\|^{2} \\
\left\langle f_{k, n} \mid b_{k, n}^{*}-v_{k, d_{k}(n)}^{*}\right\rangle \leqslant \zeta \mu_{k, d_{k}(n)}\left\|b_{k, n}^{*}-v_{k, d_{k}(n)}^{*}\right\|^{2} .
\end{array}\right.
$$

Then $\left(\left(x_{i, n}\right)_{i \in I},\left(v_{k, n}^{*}\right)_{k \in K}\right)_{n \in \mathbb{N}}$ converges weakly to a point in \mathbf{Z}.

Proof. Denote by \mathcal{H} and \mathcal{G} the Hilbert direct sums of $\left(\mathcal{H}_{i}\right)_{i \in I}$ and $\left(\mathcal{G}_{k}\right)_{k \in K}$, set $\mathbf{H}=\boldsymbol{\mathcal { H }} \oplus \mathcal{G}$, and define the operators

$$
\begin{equation*}
\mathbf{A}: \mathbf{H} \rightarrow 2^{\mathbf{H}}:\left(\left(x_{i}\right)_{i \in I},\left(v_{k}^{*}\right)_{k \in K}\right) \mapsto\left(\underset{i \in I}{X}\left(-z_{i}^{*}+A_{i} x_{i}\right)\right) \times\left(\underset{k \in K}{X}\left(r_{k}+B_{k}^{-1} v_{k}^{*}\right)\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{S}: \mathbf{H} \rightarrow \mathbf{H}:\left(\left(x_{i}\right)_{i \in I},\left(v_{k}^{*}\right)_{k \in K}\right) \mapsto\left(\left(\sum_{k \in K} L_{k, i}^{*} v_{k}^{*}\right)_{i \in I},\left(-\sum_{i \in I} L_{k, i} x_{i}\right)_{k \in K}\right) \tag{19}
\end{equation*}
$$

Using the maximal monotonicity of the operators $\left(A_{i}\right)_{i \in I}$ and $\left(B_{k}\right)_{k \in K}$, we deduce from [3, Propositions 20.22 and 20.23] that \mathbf{A} is maximally monotone. In addition, we observe that \mathbf{S} is a bounded linear operator with $\mathbf{S}^{*}=-\mathbf{S}$. At the same time, it results from (18), (19), and (2) that

$$
\begin{equation*}
\operatorname{zer}(\mathbf{A}+\mathbf{S})=\mathbf{Z} \neq \varnothing \tag{20}
\end{equation*}
$$

Furthermore, (15) yields

$$
\begin{equation*}
\left[(\forall i \in I)(\forall n \in \mathbb{N}) a_{i, n}^{*} \in-z_{i}^{*}+A_{i} a_{i, n}\right] \quad \text { and } \quad\left[(\forall k \in K)(\forall n \in \mathbb{N}) b_{k, n} \in r_{k}+B_{k}^{-1} b_{k, n}^{*}\right] \tag{21}
\end{equation*}
$$

Next, define

$$
\begin{equation*}
(\forall k \in K)(\forall n \in \mathbb{N}) \quad \bar{\vartheta}_{k}(n)=\max \left\{j \in \mathbb{N} \mid j \leqslant n \text { and } k \in K_{j}\right\} \quad \text { and } \quad \vartheta_{k}(n)=d_{k}\left(\bar{\vartheta}_{k}(n)\right) \tag{22}
\end{equation*}
$$

and

$$
(\forall i \in I)(\forall n \in \mathbb{N})\left\{\begin{array}{l}
\bar{\ell}_{i}(n)=\max \left\{j \in \mathbb{N} \mid j \leqslant n \text { and } i \in I_{j}\right\}, \quad \ell_{i}(n)=c_{i}\left(\bar{\ell}_{i}(n)\right) \tag{23}\\
u_{i, n}^{*}=\gamma_{i, \ell_{i}(n)}^{-1} x_{i, \ell_{i}(n)}-l_{i, \bar{\ell}_{i}(n)}^{*}+\gamma_{i, \ell_{i}(n)}^{-1} e_{i, \bar{\ell}_{i}(n)} \\
w_{i, n}^{*}=\sum_{k \in K} L_{k, i}^{*} v_{k, \vartheta_{k}(n)}^{*}-l_{i, \bar{\ell}_{i}(n)}^{*}
\end{array}\right.
$$

Then, for every $i \in I$ and every $n \in \mathbb{N}$, it follows from (15) and [3, Proposition 23.17(ii)] that

$$
\begin{equation*}
a_{i, n}=a_{i, \bar{\ell}_{i}(n)}=J_{\gamma_{i, \ell_{i}(n)} A_{i}}\left(\gamma_{i, \ell_{i}(n)}\left(u_{i, n}^{*}+z_{i}^{*}\right)\right)=\left(\gamma_{i, \ell_{i}(n)}^{-1} \mathrm{Id}-z_{i}^{*}+A_{i}\right)^{-1} u_{i, n}^{*} \tag{24}
\end{equation*}
$$

and, therefore, that

$$
\begin{equation*}
a_{i, n}^{*}=a_{i, \bar{\ell}_{i}(n)}^{*}=u_{i, n}^{*}-\gamma_{i, \ell_{i}(n)}^{-1} a_{i, \bar{\ell}_{i}(n)}=u_{i, n}^{*}-\gamma_{i, \ell_{i}(n)}^{-1} a_{i, n} \tag{25}
\end{equation*}
$$

Likewise, for every $k \in K$ and every $n \in \mathbb{N}$, upon setting

$$
\left\{\begin{array}{l}
v_{k, n}=\mu_{k, \vartheta_{k}(n)} v_{k, \vartheta_{k}(n)}^{*}+l_{k, \bar{\vartheta}_{k}(n)}+f_{k, \bar{\vartheta}_{k}(n)} \tag{26}\\
w_{k, n}=l_{k, \bar{\vartheta}_{k}(n)}-\sum_{i \in I} L_{k, i} x_{i, \ell_{i}(n)}
\end{array}\right.
$$

as well as invoking (22), we get from (15) and [3, Proposition 23.17(iii)] that

$$
\begin{equation*}
b_{k, n}=b_{k, \bar{\vartheta}_{k}(n)}=J_{\mu_{k, \vartheta_{k}(n)} B_{k}\left(\cdot-r_{k}\right)} v_{k, n} \tag{27}
\end{equation*}
$$

and, in turn, from (15) and [3, Proposition 23.20] that

$$
\begin{align*}
b_{k, n}^{*} & =b_{k, \bar{v}_{k}(n)}^{*} \tag{28}\\
& =\mu_{k, \vartheta_{k}(n)}^{-1}\left(v_{k, n}-b_{k, \bar{v}_{k}(n)}\right)
\end{align*}
$$

$$
\begin{align*}
& =\mu_{k, \vartheta_{k}(n)}^{-1}\left(v_{k, n}-b_{k, n}\right) \tag{29}\\
& =J_{\mu_{k, \vartheta_{k}(n)}^{-1}\left(r_{k}+B_{k}^{-1}\right)}\left(\mu_{k, \vartheta_{k}(n)}^{-1} v_{k, n}\right) \\
& =\left(\mu_{k, \vartheta_{k}(n)} \operatorname{Id}+r_{k}+B_{k}^{-1}\right)^{-1} v_{k, n} \tag{30}
\end{align*}
$$

Let us set

$$
(\forall n \in \mathbb{N})\left\{\begin{array}{l}
\mathbf{x}_{n}=\left(\left(x_{i, n}\right)_{i \in I},\left(v_{k, n}^{*}\right)_{k \in K}\right), \mathbf{u}_{n}=\left(\left(x_{i, \ell_{i}(n)}\right)_{i \in I},\left(v_{k, \vartheta_{k}(n)}^{*}\right)_{k \in K}\right) \tag{31}\\
\mathbf{e}_{n}^{*}=\left(\left(w_{i, n}^{*}\right)_{i \in I},\left(w_{k, n}\right)_{k \in K}\right), \mathbf{f}_{n}^{*}=\left(\left(\gamma_{i, \ell_{i}(n)}^{-1} e_{i, \bar{\ell}_{i}(n)}\right)_{i \in I},\left(f_{k, \bar{\vartheta}_{k}(n)}\right)_{k \in K}\right) \\
\mathbf{u}_{n}^{*}=\left(\left(u_{i, n}^{*}\right)_{i \in I},\left(v_{k, n}\right)_{k \in K}\right), \mathbf{y}_{n}=\left(\left(a_{i, n}\right)_{i \in I},\left(b_{k, n}^{*}\right)_{k \in K}\right) \\
\mathbf{a}_{n}^{*}=\left(\left(a_{i, n}^{*}\right)_{i \in I},\left(b_{k, n}\right)_{k \in K}\right), \mathbf{y}_{n}^{*}=\left(\left(t_{i, n}^{*}\right)_{i \in I},\left(t_{k, n}\right)_{k \in K}\right) \\
\mathbf{F}_{n}: \mathbf{H} \rightarrow \mathbf{H}:\left(\left(x_{i}\right)_{i \in I},\left(v_{k}^{*}\right)_{k \in K}\right) \mapsto\left(\left(\gamma_{i, \ell_{i}(n)}^{-1} x_{i}\right)_{i \in I},\left(\mu_{k, \vartheta_{k}(n)} v_{k}^{*}\right)_{k \in K}\right) .
\end{array}\right.
$$

Then, the operators $\left(\mathbf{F}_{n}\right)_{n \in \mathbb{N}}$ are ε-strongly monotone and $(1 / \varepsilon)$-Lipschitzian. For every $n \in \mathbb{N}$, by virtue of (23) and (26), we deduce from (19) that

$$
\begin{equation*}
\mathbf{S} \mathbf{u}_{n}-\mathbf{e}_{n}^{*}=\left(\left(l_{i, \bar{\chi}_{i}(n)}^{*}\right)_{i \in I},\left(-l_{k, \bar{\vartheta}_{k}(n)}\right)_{k \in K}\right) \tag{32}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\mathbf{u}_{n}^{*}=\mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{S} \mathbf{u}_{n}+\mathbf{e}_{n}^{*}+\mathbf{f}_{n}^{*} . \tag{33}
\end{equation*}
$$

Furthermore, we infer from (24), (30), and (18) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \mathbf{y}_{n}=\left(\mathbf{F}_{n}+\mathbf{A}\right)^{-1} \mathbf{u}_{n}^{*} \tag{34}
\end{equation*}
$$

At the same time, (25) and (29) imply that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \mathbf{a}_{n}^{*}=\mathbf{u}_{n}^{*}-\mathbf{F}_{n} \mathbf{y}_{n}, \tag{35}
\end{equation*}
$$

while (31), (15), and (19) guarantee that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \mathbf{y}_{n}^{*}=\mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{y}_{n} \quad \text { and } \quad \pi_{n}=\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle-\left\langle\mathbf{y}_{n} \mid \mathbf{a}_{n}^{*}\right\rangle \tag{36}
\end{equation*}
$$

Altogether, it follows from (33)-(36) that (15) is an instantiation of (3). Hence, Theorem 3(i) yields $\sum_{n \in \mathbb{N}}\left\|\mathbf{x}_{n+1}-\mathbf{x}_{n}\right\|^{2}<+\infty$. In turn, using (13), (14), (22), and (23), we deduce from [5, Lemma A.3] that, for every $i \in I$ and every $k \in K$, we have $\mathbf{x}_{\ell_{i}(n)}-\mathbf{x}_{n} \rightarrow \mathbf{0}$ and $\mathbf{x}_{\vartheta_{k}(n)}-\mathbf{x}_{n} \rightarrow \mathbf{0}$. This and (31) imply that

$$
\begin{equation*}
\mathbf{u}_{n}-\mathbf{x}_{n} \rightarrow \mathbf{0} \tag{37}
\end{equation*}
$$

Moreover, in view of (15), we deduce from (23) that

$$
\begin{equation*}
(\forall i \in I) \quad\left\|w_{i, n}^{*}\right\| \leqslant \sum_{k \in K}\left\|L_{k, i}^{*}\right\|\left\|v_{k, \vartheta_{k}(n)}^{*}-v_{k, \ell_{i}(n)}^{*}\right\| \leqslant \sum_{k \in K}\left\|L_{k, i}^{*}\right\|\left\|\mathbf{x}_{\vartheta_{k}(n)}-\mathbf{x}_{\ell_{i}(n)}\right\| \rightarrow 0 \tag{38}
\end{equation*}
$$

and from (26) that

$$
\begin{equation*}
(\forall k \in K) \quad\left\|w_{k, n}\right\| \leqslant \sum_{i \in I}\left\|L_{k, i}\right\|\left\|x_{i, \vartheta_{k}(n)}-x_{i, \ell_{i}(n)}\right\| \leqslant \sum_{i \in I}\left\|L_{k, i}\right\|\left\|\mathbf{x}_{\vartheta_{k}(n)}-\mathbf{x}_{\ell_{i}(n)}\right\| \rightarrow 0 \tag{39}
\end{equation*}
$$

Therefore, $\mathbf{e}_{n}^{*} \rightarrow \mathbf{0}$. By (16) and (17), $\left(\mathbf{f}_{n}^{*}\right)_{n \in \mathbb{N}}$ is bounded. In view of (31), (16), (17), and (32), we deduce that

$$
\begin{align*}
(\forall n \in \mathbb{N}) \quad\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{f}_{n}^{*}\right\rangle & =\sum_{i \in I}\left\langle x_{i, \ell_{i}(n)}-a_{i, n} \mid \gamma_{i, \ell_{i}(n)}^{-1} e_{i, \bar{\ell}_{i}(n)}\right\rangle+\sum_{k \in K}\left\langle v_{k, \vartheta_{k}(n)}^{*}-b_{k, n}^{*} \mid f_{k, \bar{\vartheta}_{k}(n)}\right\rangle \\
& \geqslant-\sigma \sum_{i \in I} \gamma_{i, \ell_{i}(n)}^{-1}\left\|x_{i, \ell_{i}(n)}-a_{i, n}\right\|^{2}-\zeta \sum_{k \in K} \mu_{k, \vartheta_{k}(n)}\left\|v_{k, \vartheta_{k}(n)}^{*}-b_{k, n}^{*}\right\|^{2} \\
& \geqslant-\max \{\sigma, \zeta\}\left\langle\mathbf{u}_{n}-\mathbf{y}_{n} \mid \mathbf{F}_{n} \mathbf{u}_{n}-\mathbf{F}_{n} \mathbf{y}_{n}\right\rangle \tag{40}
\end{align*}
$$

and that

$$
\begin{align*}
\left\langle\mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{u}_{n}-\mathbf{e}_{n}^{*} \mid \mathbf{f}_{n}^{*}\right\rangle & =\sum_{i \in I}\left\langle a_{i, \bar{\ell}_{i}(n)}^{*}+l_{i, \bar{\chi}_{i}(n)}^{*} \mid \gamma_{i, \ell_{i}(n)}^{-1} e_{i, \bar{\ell}_{i}(n)}\right\rangle+\sum_{k \in K}\left\langle b_{k, \bar{\vartheta}_{k}(n)}-l_{k, \bar{\vartheta}_{k}(n)} \mid f_{k, \bar{\vartheta}_{k}(n)}\right\rangle \\
& \leqslant \sigma \sum_{i \in I}\left\|a_{i, \bar{\ell}_{i}(n)}^{*}+l_{i, \bar{\ell}_{i}(n)}^{*}\right\|^{2}+\zeta \sum_{k \in K}\left\|b_{k, \bar{\vartheta}_{k}(n)}-l_{k, \bar{\vartheta}_{k}(n)}\right\|^{2} \\
& \leqslant \max \{\sigma, \zeta\}\left\|\mathbf{a}_{n}^{*}+\mathbf{S} \mathbf{u}_{n}-\mathbf{e}_{n}^{*}\right\|^{2} \tag{41}
\end{align*}
$$

Altogether, the conclusion follows from Theorem 3(ii).
Remark 5 Here are a few comments on Corollary 4.
(i) Using similar arguments, one can show that the asynchronous strongly convergent blockiterative method [7, Algorithm 14] and its special case [2, Eq. (3.10)] can be viewed as instances of [4, Theorem 4.8].
(ii) In the special case of (15) where $I=\{1\}$ and

$$
(\forall n \in \mathbb{N}) \quad K_{n}=K \quad \text { and } \quad\left\{\begin{array}{l}
e_{1, n}=0, \quad c_{1}(n)=n \tag{42}\\
(\forall k \in K) \quad f_{k, n}=0, \quad d_{k}(n)=n
\end{array}\right.
$$

the connection between [7, Theorem 13] and an instance of the warped proximal algorithm was established in [9, Proposition 19]. Nevertheless, it does not seem possible to prove [7, Theorem 13] in its full generality by using the techniques of [9].

Remark 6 Take $n \in \mathbb{N}$. Then, upon setting

$$
\begin{equation*}
\mathbf{H}_{n}=\left\{\mathbf{x} \in \mathbf{H} \mid\left\langle\mathbf{x}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \leqslant 0\right\} \tag{43}
\end{equation*}
$$

as well as invoking (9) and (31), we deduce that the update step

```
\(\pi_{n}=\sum_{i \in I}\left(\left\langle x_{i, n} \mid t_{i, n}^{*}\right\rangle-\left\langle a_{i, n} \mid a_{i, n}^{*}\right\rangle\right)+\sum_{k \in K}\left(\left\langle t_{k, n} \mid v_{k, n}^{*}\right\rangle-\left\langle b_{k, n} \mid b_{k, n}^{*}\right\rangle\right)\)
if \(\pi_{n}>0\)
\(\left\lfloor\begin{array}{l}\tau_{n}=\sum_{i \in I}\left\|t_{i, n}^{*}\right\|^{2}+\sum_{k \in K}\left\|t_{k, n}\right\|^{2} \\ \theta_{n}=\lambda_{n} \pi_{n} / \tau_{n}\end{array}\right.\)
else
\(\left\lfloor\theta_{n}=0\right.\)
for every \(i \in I\)
\(\left\lfloor x_{i, n+1}=x_{i, n}-\theta_{n} t_{i, n}^{*}\right.\)
for every \(k \in K\)
    \(v_{k, n+1}^{*}=v_{k, n}^{*}-\theta_{n} t_{k, n}\)
```

of (15) can be rewritten as

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\lambda_{n}\left(\operatorname{proj}_{\mathbf{H}_{n}} \mathbf{x}_{n}-\mathbf{x}_{n}\right) \tag{45}
\end{equation*}
$$

which is the same as that of [7, Algorithm 12]; see [7, Eq. (22)]. Since $\mathbf{S}^{*}=-\mathbf{S}$, we derive from (36) and (31) that

$$
\begin{equation*}
\pi_{n}=\left\langle\mathbf{x}_{n}-\mathbf{y}_{n} \mid \mathbf{y}_{n}^{*}\right\rangle \quad \text { and } \quad\left\|\mathbf{y}_{n}^{*}\right\|^{2}=\sum_{i \in I}\left\|t_{i, n}^{*}\right\|^{2}+\sum_{k \in K}\left\|t_{k, n}\right\|^{2} \tag{46}
\end{equation*}
$$

from which we obtain the implication $\pi_{n}>0 \Rightarrow \tau_{n}=\left\|\mathbf{y}_{n}^{*}\right\|^{2}>0$.
Acknowledgments. This work is a part of the author's Ph.D. dissertation and it was supported by the National Science Foundation under grant DMS-1818946. The author thanks his Ph.D. advisor P. L. Combettes for his guidance during this work. The author thanks the anonymous referees for suggestions which helped improve the manuscript.

References

[1] A. Alotaibi, P. L. Combettes, and N. Shahzad, Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set, SIAM J. Optim., vol. 24, pp. 2076-2095, 2014.
[2] A. Alotaibi, P. L. Combettes, and N. Shahzad, Best approximation from the Kuhn-Tucker set of composite monotone inclusions, Numer. Funct. Anal. Optim., vol. 36, pp. 1513-1532, 2015.
[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. Springer, New York, 2017.
[4] M. N. Bùi and P. L. Combettes, Warped proximal iterations for monotone inclusions, J. Math. Anal. Appl., vol. 491, art. 124315, 21 pp., 2020.
[5] M. N. Bùi and P. L. Combettes, Multivariate monotone inclusions in saddle form, Math. Oper. Res., published online on 2021-12-21.
[6] P. L. Combettes, Systems of structured monotone inclusions: Duality, algorithms, and applications, SIAM J. Optim., vol. 23, pp. 2420-2447, 2013.
[7] P. L. Combettes and J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions, Math. Program., vol. B168, pp. 645-672, 2018.
[8] J. Eckstein and B. F. Svaiter, General projective splitting methods for sums of maximal monotone operators, SIAM J. Control Optim., vol. 48, pp. 787-811, 2009.
[9] P. Giselsson, Nonlinear forward-backward splitting with projection correction, 2019-08-20. https://arxiv.org/pdf/1908.07449v1
[10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., vol. 14, pp. 877-898, 1976.
[11] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., vol. 38, pp. 431-446, 2000.

