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In [4], the warped proximal algorithm was proposed and its pertinence was illustrated through the
ability to unify existing methods such as those of [1, 6, 10, 11], and to design novel flexible algorithms
for solving challenging monotone inclusions. Let us state a version of [4, Theorem 4.2].

Proposition 1 Let H be a real Hilbert space, let M : H → 2H be a maximally monotone operator such
that zerM 6= ∅, let x0 ∈ H, let ε ∈ ]0, 1[, let α ∈ ]0,+∞[, and let β ∈ [α,+∞[. For every n ∈ N, let
Kn : H→ H be α-strongly monotone and β-Lipschitzian, and let λn ∈ [ε, 2− ε]. Iterate

for n = 0, 1, . . .

take x̃n ∈ H
yn = (Kn +M)−1(Knx̃n)
y∗n = Knx̃n −Knyn
if 〈xn − yn | y∗n〉 > 0⌊

xn+1 = xn −
λn〈xn − yn | y∗n〉

‖y∗n‖2
y∗n

else⌊
xn+1 = xn.

(1)

Then the following hold:

(i) (xn)n∈N is bounded.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii) (∀n ∈ N) 〈xn − yn | y∗n〉 6 ε−1‖y∗n‖ ‖xn+1 − xn‖.
(iv) Suppose that x̃n − xn → 0. Then (xn)n∈N converges weakly to a point in zerM.

Proof. We deduce from [4, Proposition 3.9(i)[d]&(ii)[b]] that (1) is a special case of [4, Eq. (4.5)].

(i): An inspection of the proof of [4, Theorem 4.2] reveals that (xn)n∈N is Fejér monotone with
respect to zerM, that is, (∀z ∈ zerM)(∀n ∈ N) ‖xn+1 − z‖ 6 ‖xn − z‖. Therefore, the boundedness of
(xn)n∈N follows from [3, Proposition 5.4(i)].

(ii): [4, Theorem 4.2(i)].

(iii): [4, Eqs. (4.8), (4.9), and (4.4)].

(iv): Combine [4, Theorem 4.2(ii)] and [4, Remark 4.3].
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A problem of interest in modern nonlinear analysis is the following (see, e.g., [1, 5, 6, 7] and the
references therein for discussions on this problem).

Problem 2 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces. For every i ∈ I and every
k ∈ K, let Ai : Hi → 2Hi and Bk : Gk → 2Gk be maximally monotone, let z∗i ∈ Hi, let rk ∈ Gk, and let
Lk,i : Hi → Gk be linear and bounded. The problem is to

find (xi)i∈I ∈×
i∈I
Hi and (v∗k)k∈K ∈×

k∈K
Gk such that


(∀i ∈ I) z∗i −

∑
k∈K

L∗k,iv
∗
k ∈ Aixi

(∀k ∈ K)
∑
i∈I

Lk,ixi − rk ∈ B−1k v∗k.
(2)

The set of solutions to (2) is denoted by Z.

The first asynchronous block-iterative algorithm to solve Problem 2 was proposed in [7, Algo-
rithm 12] as an extension of the projective splitting techniques found in [1, 8]. The goal of this
short note is to interpret these projective splitting frameworks in simple terms as warped proximal
iterations. More precisely, we show that [7, Algorithm 12] can be viewed as an instantiation of (1).
To this end, we first derive an abstract weak convergence principle from Proposition 1. (We refer the
reader to [3] for background on monotone operator theory and nonlinear analysis.)

Theorem 3 Let H be a real Hilbert space, let A : H → 2H be a maximally monotone operator, and let
S : H → H be a bounded linear operator such that S∗ = −S. In addition, let x0 ∈ H, let ε ∈ ]0, 1[,
let α ∈ ]0,+∞[, let ρ ∈ [α,+∞[, and for every n ∈ N, let Fn : H → H be α-strongly monotone and
ρ-Lipschitzian, and let λn ∈ [ε, 2− ε]. Iterate

for n = 0, 1, . . .

take un ∈ H, e∗n ∈ H, and f∗n ∈ H
u∗n = Fnun − Sun + e∗n + f∗n
yn = (Fn + A)−1u∗n
a∗n = u∗n − Fnyn
y∗n = a∗n + Syn
πn = 〈xn | y∗n〉 − 〈yn | a∗n〉
if πn > 0 τn = ‖y∗n‖2
θn = λnπn/τn
xn+1 = xn − θny∗n

else⌊
xn+1 = xn.

(3)

Suppose that zer(A+ S) 6= ∅. Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(ii) Suppose that un − xn → 0, that e∗n → 0, that (f∗n)n∈N is bounded, and that there exists δ ∈ ]0, 1[
such that

(∀n ∈ N)

{
〈un − yn | f∗n〉 > −δ〈un − yn | Fnun − Fnyn〉
〈a∗n + Sun − e∗n | f∗n〉 6 δ‖a∗n + Sun − e∗n‖2.

(4)

Then (xn)n∈N converges weakly to a point in zer(A+ S).
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Proof. Set M = A + S and (∀n ∈ N) Kn = Fn − S. Then, it follows from [3, Example 20.35 and
Corollary 25.5(i)] that M is maximally monotone with zerM 6= ∅. Now take n ∈ N. We have

Kn +M = Fn + A. (5)

Since S∗ = −S, we deduce that

Kn is α-strongly monotone and β-Lipschitzian, (6)

where β = ρ + ‖S‖. Thus, [3, Corollary 20.28 and Proposition 22.11(ii)] guarantee that there exists
x̃n ∈ H such that

u∗n = Knx̃n. (7)

Hence, by (3) and (5),

yn = (Kn +M)−1(Knx̃n) and y∗n = u∗n − Fnyn + Syn = Knx̃n −Knyn. (8)

At the same time, we have 〈yn | Syn〉 = 0 and it thus results from (3) that

πn = 〈xn | y∗n〉 − 〈yn | a∗n + Syn〉 = 〈xn − yn | y∗n〉. (9)

Altogether, (3) is a special case of (1).

(i): Proposition 1(ii).

(ii): In the light of Proposition 1(iv), it suffices to verify that x̃n − xn → 0. For every n ∈ N, since
Kn + M is maximally monotone [3, Corollary 25.5(i)] and α-strongly monotone, [3, Example 22.7
and Proposition 22.11(ii)] implies that (Kn + M)−1 : H → H is (1/α)-Lipschitzian. Therefore, we
derive from (3), (5), [4, Proposition 3.10(i)], and (6) that (∀z ∈ zerM)(∀n ∈ N) α‖yn − z‖ =
α‖(Kn +M)−1u∗n − (Kn +M)−1(Knz)‖ 6 ‖u∗n −Knz‖ = ‖Knun −Knz+ e∗n + f∗n‖ 6 ‖Knun −Knz‖+
‖e∗n‖ + ‖f∗n‖ 6 β‖un − z‖ + ‖e∗n‖ + ‖f∗n‖. Thus, since Proposition 1(i) and our assumption imply that
(un)n∈N is bounded, it follows that (yn)n∈N is bounded. At the same time, for every n ∈ N, we get
from (3) that

y∗n = Fnun − Fnyn + e∗n + f∗n − (Sun − Syn) = Knun −Knyn + e∗n + f∗n (10)

and, thus, from (6) that ‖y∗n‖ 6 ‖Knun − Knyn‖ + ‖e∗n‖ + ‖f∗n‖ 6 β‖un − yn‖ + ‖e∗n‖ + ‖f∗n‖. Thus,
(y∗n)n∈N is bounded, from which, (i), and Proposition 1(iii) we obtain lim〈xn − yn | y∗n〉 6 0. In turn,
since xn − un → 0 and e∗n → 0, it results from (10) and (4) that

0 > lim〈xn − yn | y∗n〉
= lim

(
〈un − yn | y∗n〉+ 〈xn − un | y∗n〉

)
= lim〈un − yn | y∗n〉
= lim

(
〈un − yn | Fnun − Fnyn + e∗n + f∗n〉 − 〈un − yn | Sun − Syn〉

)
= lim

(
〈un − yn | Fnun − Fnyn + f∗n〉+ 〈un − yn | e∗n〉

)
> lim

(
(1− δ)〈un − yn | Fnun − Fnyn〉+ 〈un − yn | e∗n〉

)
> limα(1− δ)‖un − yn‖2

> limα(1− δ)ρ−2‖Fnun − Fnyn‖2. (11)

Hence, Fnun − Fnyn → 0. On the other hand, since (f∗n)n∈N is bounded and since (3) yields (a∗n +
Sun − e∗n)n∈N = (Fnun − Fnyn + f∗n)n∈N, we derive from (4) that

lim(1− δ)‖f∗n‖2 = lim
(
〈Fnun − Fnyn | f∗n〉+ (1− δ)‖f∗n‖2

)
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= lim
(
〈Fnun − Fnyn + f∗n | f∗n〉 − δ‖f∗n‖2

)
6 lim

(
δ‖Fnun − Fnyn + f∗n‖2 − δ‖f∗n‖2

)
= lim

(
δ‖Fnun − Fnyn‖2 + 2δ〈Fnun − Fnyn | f∗n〉

)
= 0. (12)

Therefore, f∗n → 0. Consequently, by (6), (7), and (3), α‖x̃n − xn‖ 6 ‖Knx̃n − Knxn‖ = ‖Knun −
Knxn + e∗n + f∗n‖ 6 β‖un − xn‖+ ‖e∗n‖+ ‖f∗n‖ → 0.

We are now ready to recover [7, Theorem 13]; see also [7, Remark 4] for comments on the error
sequences (ei,n)n∈N,i∈In and (fk,n)n∈N,k∈Kn in (15). The reader is referred to [7] for discussions on
the features of the algorithm (15). Recall that, given a real Hilbert space H with identity operator Id,
the resolvent of an operator A : H → 2H is JA = (Id +A)−1.

Corollary 4 ([7]) Consider the setting of Problem 2 and suppose that Z 6= ∅. Let (In)n∈N be nonempty
subsets of I and (Kn)n∈N be nonempty subsets of K such that

I0 = I, K0 = K, and (∃T ∈ N)(∀n ∈ N)
n+T⋃
j=n

Ij = I and
n+T⋃
j=n

Kj = K. (13)

In addition, let D ∈ N, let ε ∈ ]0, 1[, let (λn)n∈N be in [ε, 2− ε], and for every i ∈ I and every k ∈ K, let
(ci(n))n∈N and (dk(n))n∈N be in N such that

(∀n ∈ N) n−D 6 ci(n) 6 n and n−D 6 dk(n) 6 n, (14)

4



let (γi,n)n∈N and (µk,n)n∈N be in [ε, 1/ε], let xi,0 ∈ Hi, and let v∗k,0 ∈ Gk. Iterate

for n = 0, 1, . . .

for every i ∈ In
take ei,n ∈ Hi
l∗i,n =

∑
k∈K L

∗
k,iv
∗
k,ci(n)

ai,n = Jγi,ci(n)Ai

(
xi,ci(n) + γi,ci(n)(z

∗
i − l∗i,n) + ei,n

)
a∗i,n = γ−1i,ci(n)(xi,ci(n) − ai,n + ei,n)− l∗i,n

for every i ∈ I r In⌊
ai,n = ai,n−1
a∗i,n = a∗i,n−1

for every k ∈ Kn
take fk,n ∈ Gk
lk,n =

∑
i∈I Lk,ixi,dk(n)

bk,n = rk + Jµk,dk(n)Bk

(
lk,n + µk,dk(n)v

∗
k,dk(n)

+ fk,n − rk
)

b∗k,n = v∗k,dk(n) + µ−1k,dk(n)(lk,n − bk,n + fk,n)

tk,n = bk,n −
∑

i∈I Lk,iai,n
for every k ∈ K rKn bk,n = bk,n−1
b∗k,n = b∗k,n−1
tk,n = bk,n −

∑
i∈I Lk,iai,n

for every i ∈ I⌊
t∗i,n = a∗i,n +

∑
k∈K L

∗
k,ib
∗
k,n

πn =
∑

i∈I
(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗i,n〉

)
+
∑

k∈K
(
〈tk,n | v∗k,n〉 − 〈bk,n | b∗k,n〉

)
if πn > 0⌊
τn =

∑
i∈I ‖t∗i,n‖2 +

∑
k∈K ‖tk,n‖2

θn = λnπn/τn
else⌊
θn = 0

for every i ∈ I⌊
xi,n+1 = xi,n − θnt∗i,n

for every k ∈ K⌊
v∗k,n+1 = v∗k,n − θntk,n.

(15)

In addition, suppose that there exist η ∈ ]0,+∞[, χ ∈ ]0,+∞[, σ ∈ ]0, 1[, and ζ ∈ ]0, 1[ such that

(∀n ∈ N)(∀i ∈ In)


‖ei,n‖ 6 η

〈xi,ci(n) − ai,n | ei,n〉 > −σ‖xi,ci(n) − ai,n‖2

〈ei,n | a∗i,n + l∗i,n〉 6 σγi,ci(n)‖a∗i,n + l∗i,n‖2
(16)

and that

(∀n ∈ N)(∀k ∈ Kn)


‖fk,n‖ 6 χ

〈lk,n − bk,n | fk,n〉 > −ζ‖lk,n − bk,n‖2

〈fk,n | b∗k,n − v∗k,dk(n)〉 6 ζµk,dk(n)‖b
∗
k,n − v∗k,dk(n)‖

2.

(17)

Then ((xi,n)i∈I , (v
∗
k,n)k∈K)n∈N converges weakly to a point in Z.
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Proof. Denote by H and G the Hilbert direct sums of (Hi)i∈I and (Gk)k∈K , set H = H⊕ G, and define
the operators

A : H→ 2H :
(
(xi)i∈I , (v

∗
k)k∈K

)
7→
(
×
i∈I

(
−z∗i +Aixi

))
×
(
×
k∈K

(
rk +B−1k v∗k

))
(18)

and

S : H→ H :
(
(xi)i∈I , (v

∗
k)k∈K

)
7→

((∑
k∈K

L∗k,iv
∗
k

)
i∈I

,

(
−
∑
i∈I

Lk,ixi

)
k∈K

)
. (19)

Using the maximal monotonicity of the operators (Ai)i∈I and (Bk)k∈K , we deduce from [3, Proposi-
tions 20.22 and 20.23] that A is maximally monotone. In addition, we observe that S is a bounded
linear operator with S∗ = −S. At the same time, it results from (18), (19), and (2) that

zer(A+ S) = Z 6= ∅. (20)

Furthermore, (15) yields[
(∀i ∈ I)(∀n ∈ N) a∗i,n ∈ −z∗i +Aiai,n

]
and

[
(∀k ∈ K)(∀n ∈ N) bk,n ∈ rk +B−1k b∗k,n

]
. (21)

Next, define

(∀k ∈ K)(∀n ∈ N) ϑk(n) = max
{
j ∈ N | j 6 n and k ∈ Kj

}
and ϑk(n) = dk

(
ϑk(n)

)
, (22)

and

(∀i ∈ I)(∀n ∈ N)


`i(n) = max

{
j ∈ N | j 6 n and i ∈ Ij

}
, `i(n) = ci

(
`i(n)

)
u∗i,n = γ−1i,`i(n)xi,`i(n) − l

∗
i,`i(n)

+ γ−1i,`i(n)ei,`i(n)

w∗i,n =
∑

k∈K L
∗
k,iv
∗
k,ϑk(n)

− l∗
i,`i(n)

.

(23)

Then, for every i ∈ I and every n ∈ N, it follows from (15) and [3, Proposition 23.17(ii)] that

ai,n = ai,`i(n) = Jγi,`i(n)Ai

(
γi,`i(n)(u

∗
i,n + z∗i )

)
=
(
γ−1i,`i(n)Id− z

∗
i +Ai

)−1
u∗i,n (24)

and, therefore, that

a∗i,n = a∗
i,`i(n)

= u∗i,n − γ−1i,`i(n)ai,`i(n) = u∗i,n − γ−1i,`i(n)ai,n. (25)

Likewise, for every k ∈ K and every n ∈ N, upon setting{
vk,n = µk,ϑk(n)v

∗
k,ϑk(n)

+ lk,ϑk(n) + fk,ϑk(n)
wk,n = lk,ϑk(n) −

∑
i∈I Lk,ixi,`i(n)

(26)

as well as invoking (22), we get from (15) and [3, Proposition 23.17(iii)] that

bk,n = bk,ϑk(n) = Jµk,ϑk(n)Bk( ·−rk)vk,n (27)

and, in turn, from (15) and [3, Proposition 23.20] that

b∗k,n = b∗
k,ϑk(n)

(28)

= µ−1k,ϑk(n)
(
vk,n − bk,ϑk(n)

)
6



= µ−1k,ϑk(n)(vk,n − bk,n) (29)

= Jµ−1
k,ϑk(n)

(rk+B
−1
k )

(
µ−1k,ϑk(n)vk,n

)
=
(
µk,ϑk(n)Id + rk +B−1k

)−1
vk,n. (30)

Let us set

(∀n ∈ N)



xn =
(
(xi,n)i∈I , (v

∗
k,n)k∈K

)
, un =

((
xi,`i(n)

)
i∈I ,

(
v∗k,ϑk(n)

)
k∈K

)
e∗n =

(
(w∗i,n)i∈I , (wk,n)k∈K

)
, f∗n =

((
γ−1i,`i(n)ei,`i(n)

)
i∈I ,

(
fk,ϑk(n)

)
k∈K

)
u∗n =

(
(u∗i,n)i∈I , (vk,n)k∈K

)
, yn =

(
(ai,n)i∈I , (b

∗
k,n)k∈K

)
a∗n =

(
(a∗i,n)i∈I , (bk,n)k∈K

)
, y∗n =

(
(t∗i,n)i∈I , (tk,n)k∈K

)
Fn : H→ H :

(
(xi)i∈I , (v

∗
k)k∈K

)
7→
((
γ−1i,`i(n)xi

)
i∈I ,

(
µk,ϑk(n)v

∗
k

)
k∈K

)
.

(31)

Then, the operators (Fn)n∈N are ε-strongly monotone and (1/ε)-Lipschitzian. For every n ∈ N, by
virtue of (23) and (26), we deduce from (19) that

Sun − e∗n =
((
l∗
i,`i(n)

)
i∈I ,

(
−lk,ϑk(n)

)
k∈K

)
, (32)

which yields

u∗n = Fnun − Sun + e∗n + f∗n. (33)

Furthermore, we infer from (24), (30), and (18) that

(∀n ∈ N) yn = (Fn + A)−1u∗n. (34)

At the same time, (25) and (29) imply that

(∀n ∈ N) a∗n = u∗n − Fnyn, (35)

while (31), (15), and (19) guarantee that

(∀n ∈ N) y∗n = a∗n + Syn and πn = 〈xn | y∗n〉 − 〈yn | a∗n〉. (36)

Altogether, it follows from (33)–(36) that (15) is an instantiation of (3). Hence, Theorem 3(i) yields∑
n∈N ‖xn+1− xn‖2 < +∞. In turn, using (13), (14), (22), and (23), we deduce from [5, Lemma A.3]

that, for every i ∈ I and every k ∈ K, we have x`i(n) − xn → 0 and xϑk(n) − xn → 0. This and (31)
imply that

un − xn → 0. (37)

Moreover, in view of (15), we deduce from (23) that

(∀i ∈ I) ‖w∗i,n‖ 6
∑
k∈K
‖L∗k,i‖

∥∥v∗k,ϑk(n) − v∗k,`i(n)∥∥ 6
∑
k∈K
‖L∗k,i‖ ‖xϑk(n) − x`i(n)‖ → 0 (38)

and from (26) that

(∀k ∈ K) ‖wk,n‖ 6
∑
i∈I
‖Lk,i‖ ‖xi,ϑk(n) − xi,`i(n)‖ 6

∑
i∈I
‖Lk,i‖ ‖xϑk(n) − x`i(n)‖ → 0. (39)
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Therefore, e∗n → 0. By (16) and (17), (f∗n)n∈N is bounded. In view of (31), (16), (17), and (32), we
deduce that

(∀n ∈ N) 〈un − yn | f∗n〉 =
∑
i∈I

〈
xi,`i(n) − ai,n | γ

−1
i,`i(n)

ei,`i(n)
〉
+
∑
k∈K

〈
v∗k,ϑk(n) − b

∗
k,n | fk,ϑk(n)

〉
> −σ

∑
i∈I

γ−1i,`i(n)‖xi,`i(n) − ai,n‖
2 − ζ

∑
k∈K

µk,ϑk(n)‖v
∗
k,ϑk(n)

− b∗k,n‖2

> −max{σ, ζ}〈un − yn | Fnun − Fnyn〉 (40)

and that

〈a∗n + Sun − e∗n | f∗n〉 =
∑
i∈I

〈
a∗
i,`i(n)

+ l∗
i,`i(n)

| γ−1i,`i(n)ei,`i(n)
〉
+
∑
k∈K

〈
bk,ϑk(n) − lk,ϑk(n) | fk,ϑk(n)

〉
6 σ

∑
i∈I

∥∥a∗
i,`i(n)

+ l∗
i,`i(n)

∥∥2 + ζ
∑
k∈K

∥∥bk,ϑk(n) − lk,ϑk(n)∥∥2
6 max{σ, ζ}‖a∗n + Sun − e∗n‖2. (41)

Altogether, the conclusion follows from Theorem 3(ii).

Remark 5 Here are a few comments on Corollary 4.

(i) Using similar arguments, one can show that the asynchronous strongly convergent block-
iterative method [7, Algorithm 14] and its special case [2, Eq. (3.10)] can be viewed as instances
of [4, Theorem 4.8].

(ii) In the special case of (15) where I = {1} and

(∀n ∈ N) Kn = K and

{
e1,n = 0, c1(n) = n

(∀k ∈ K) fk,n = 0, dk(n) = n,
(42)

the connection between [7, Theorem 13] and an instance of the warped proximal algorithm
was established in [9, Proposition 19]. Nevertheless, it does not seem possible to prove [7,
Theorem 13] in its full generality by using the techniques of [9].

Remark 6 Take n ∈ N. Then, upon setting

Hn =
{
x ∈ H | 〈x− yn | y∗n〉 6 0

}
(43)

as well as invoking (9) and (31), we deduce that the update step

πn =
∑

i∈I
(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗i,n〉

)
+
∑

k∈K
(
〈tk,n | v∗k,n〉 − 〈bk,n | b∗k,n〉

)
if πn > 0⌊
τn =

∑
i∈I ‖t∗i,n‖2 +

∑
k∈K ‖tk,n‖2

θn = λnπn/τn
else⌊
θn = 0

for every i ∈ I⌊
xi,n+1 = xi,n − θnt∗i,n

for every k ∈ K⌊
v∗k,n+1 = v∗k,n − θntk,n

(44)
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of (15) can be rewritten as

xn+1 = xn + λn(projHn
xn − xn), (45)

which is the same as that of [7, Algorithm 12]; see [7, Eq. (22)]. Since S∗ = −S, we derive from (36)
and (31) that

πn = 〈xn − yn | y∗n〉 and ‖y∗n‖2 =
∑
i∈I
‖t∗i,n‖2 +

∑
k∈K
‖tk,n‖2, (46)

from which we obtain the implication πn > 0⇒ τn = ‖y∗n‖2 > 0.
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