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§1. Introduction

Let H be a real Hilbert space with scalar product ⟨ · | · ⟩H and power set 2H. An operator A : H → 2H
is monotone if

(∀x ∈ H) (∀y ∈ H) (∀x∗ ∈ Ax) (∀y∗ ∈ Ay) ⟨x − y | x∗ − y∗⟩H ⩾ 0. (1.1)

Cartesian products of monotone operators are important constructs that arise in many foundational
and practical aspects of the theory [3, 6, 7, 16, 22, 37]. Such products can be defined in a straightforward
manner for a finite family (A𝑘 )1⩽𝑘⩽𝑝 of monotone operators acting, respectively, on real Hilbert spaces
(H𝑘 )1⩽𝑘⩽𝑝 . Thus, if one denotes by H = H1 ⊕ · · · ⊕ H𝑝 the Hilbert direct sum of (H𝑘 )1⩽𝑘⩽𝑝 and by
𝑥 = (x1, . . . , x𝑝) a generic vector inH , the product operator is [3]

𝐴 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H |

(
∀𝑘 ∈ {1, . . . , 𝑝}

)
x∗
𝑘
∈ A𝑘x𝑘

}
. (1.2)

A fundamental instance of an infinite product arises in [6] in the context of evolution equations.
There, (𝛺,F, 𝜇) is a measure space, H is a separable real Hilbert space, A : H → 2H is a monotone
operator,H = 𝐿2(𝛺,F, 𝜇;H), and a product operator is defined as

𝐴 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A

(
𝑥 (𝜔)

)}
, (1.3)

where, following [36], the symbol ∀𝜇 means “for 𝜇-almost every.” Another instance of an infinite
product appears in [1, Section III.2] in the context of nonautonomous evolution equations, where 𝜇 is
the Lebesgue measure, (A𝑡 )𝑡∈[0,𝑇 ] is a family of monotone operators from H to 2H,H = 𝐿2( [0,𝑇 ];H),
and

𝐴 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H |

(
∀𝜇𝑡 ∈ [0,𝑇 ]

)
𝑥∗(𝑡) ∈ A𝑡

(
𝑥 (𝑡)

)}
. (1.4)

Similar examples arise in probability theory [4], circuit theory [15], approximation theory [18], cal-
culus of variations [21], partial differential equations [22], variational analysis [32], convex analysis
[35], and evolution systems [37]. In terms of modeling, (1.2) is limited to a finite number of operators,
(1.3) requires that all the factor operators be identical to A, and (1.4) imposes that all the factor spaces
be identical to H and operates with the standard Lebesgue measure space [0,𝑇 ]. The above examples
are not based on a common mathematical setup and the question of defining a unifying theory for
arbitrary products of monotone operators acting on different spaces is open. This question is not only
of theoretical interest, but it is also motivated by applications in areas such as dynamical systems,
stochastic optimization, and inverse problems. It is the objective of the present paper to fill this gap
by introducing such a framework, studying the properties of the resulting product operators, and
exploring some of their applications.
To support our framework, we bring into play the notion of a direct integral of Hilbert spaces, which

is an attempt to extend Hilbert direct sums from finite families to arbitrary ones. This construction
originates in papers published around World War II [23, 24, 26, 30]. We follow [20, Section II.§1].

Definition 1.1 ([20, Définition II.§1.1]). Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space, let
(H𝜔 )𝜔∈𝛺 be a family of real Hilbert spaces, and let

∏
𝜔∈𝛺 H𝜔 be the usual real vector space of map-

pings 𝑥 defined on𝛺 such that (∀𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ H𝜔 . Suppose that𝔊 is a vector subspace of
∏

𝜔∈𝛺 H𝜔

which satisfies the following:

[A] For every 𝑥 ∈𝔊, the function 𝛺 → R : 𝜔 ↦→ ∥𝑥 (𝜔)∥H𝜔
is F-measurable.
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[B] For every 𝑥 ∈ ∏
𝜔∈𝛺 H𝜔 ,[

(∀𝑦 ∈𝔊) 𝛺 → R : 𝜔 ↦→ ⟨𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔
is F-measurable

]
⇒ 𝑥 ∈𝔊. (1.5)

[C] There exists a sequence (𝑒𝑛)𝑛∈N in𝔊 such that (∀𝜔 ∈ 𝛺) span{𝑒𝑛 (𝜔)}𝑛∈N = H𝜔 .

Then ((H𝜔 )𝜔∈𝛺 ,𝔊) is an F-measurable vector field of real Hilbert spaces.

We shall operate within the framework of [20, Section II.§1.5], which revolves around the following
assumption.

Assumption 1.2. Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space, let ((H𝜔 )𝜔∈𝛺 ,𝔊) be an F-
measurable vector field of real Hilbert spaces, and set

ℌ =

{
𝑥 ∈𝔊

���� ∫
𝛺

∥𝑥 (𝜔)∥2H𝜔
𝜇 (𝑑𝜔) < +∞

}
. (1.6)

LetH be the real vector space of equivalence classes of 𝜇-a.e. equal mappings inℌ equipped with the
scalar product

⟨ · | · ⟩H : H ×H → R : (𝑥,𝑦) ↦→
∫

𝛺

⟨𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔
𝜇 (𝑑𝜔), (1.7)

where we adopt the common practice of designating by 𝑥 both an equivalence class in H and a
representative of it inℌ. ThenH is a Hilbert space [20, Proposition II.§1.5(i)], called the Hilbert direct
integral of (H𝜔 )𝜔∈𝛺 relative to𝔊. Following [20, Définition II.§1.3], we write

H =
𝔊∫ ⊕

𝛺

H𝜔𝜇 (𝑑𝜔) . (1.8)

We are now in a position to propose a definition for an arbitrary product of set-valued operators
acting on different Hilbert spaces.

Definition 1.3. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let A𝜔 : H𝜔 → 2H𝜔 .
The Hilbert direct integral of the operators (A𝜔 )𝜔∈𝛺 relative to𝔊 is

𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔) : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔

(
𝑥 (𝜔)

)}
. (1.9)

In tandem with Definition 1.3, we introduce the following notion of an arbitrary direct sum of
functions defined on different Hilbert spaces. In the convex case, the subdifferential operator will
serve as a bridge between Definitions 1.3 and 1.4. Indeed, we shall establish in Theorem 4.7 that,
under suitable assumptions,

𝜕

(
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔)
)
=

𝔊∫ ⊕

𝛺

𝜕f𝜔𝜇 (𝑑𝜔) . (1.10)

Definition 1.4. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let f𝜔 : H𝜔 →
[−∞, +∞]. Suppose that, for every 𝑥 ∈ ℌ, the function 𝛺 → [−∞, +∞] : 𝜔 ↦→ f𝜔 (𝑥 (𝜔)) is F-
measurable. The Hilbert direct integral of the functions (f𝜔 )𝜔∈𝛺 relative to𝔊 is

𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔) : H → [−∞, +∞] : 𝑥 ↦→
∫

𝛺

f𝜔
(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔), (1.11)

where we adopt the customary convention that the integral
∫

𝛺 𝜗𝑑𝜇 of an F-measurable function
𝜗 : 𝛺 → [−∞, +∞] is the usual Lebesgue integral, except when the Lebesgue integral

∫

𝛺 max{𝜗, 0}𝑑𝜇
is +∞, in which case

∫

𝛺 𝜗𝑑𝜇 = +∞.
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The remainder of the paper is as follows. Section 2 presents our notation and provides preliminary
results. The Hilbert direct integral of a family of set-valued operators introduced in Definition 1.3 is
studied in Section 3. In particular, we establish conditions under which properties such as monotonic-
ity, maximal monotonicity, cocoercivity, and averagedness are transferable from the factor operators
to the Hilbert direct integral. We also establish formulas for the domain, range, inverse, resolvent, and
Yosida approximation of this integral. Section 4 focuses on the Hilbert direct integral of functions of
Definition 1.4. We provide conditions for evaluating the Legendre conjugate, the subdifferential, the
recession function, the Moreau envelope, and the proximity operator of the Hilbert direct integral of
a family of functions by applying these operations to each factor and then taking the Hilbert direct
integral of the resulting family. In Section 5, the results of Section 3 are used to investigate integral
inclusion problems involving a family of linearly composed monotone operators. In this context, we
propose a duality theory and discuss some applications.

§2. Notation and theoretical tools

2.1. Notation

We follow the notation of [3], to which we refer for a detailed account of the following notions.
Let H be a real Hilbert space with identity operator IdH , scalar product ⟨ · | · ⟩H , and associated

norm ∥ · ∥H . The weak convergence of a sequence (𝑥𝑛)𝑛∈N to 𝑥 is denoted by 𝑥𝑛 ⇀ 𝑥 , and 𝑥𝑛 → 𝑥

denotes its strong convergence.
Let 𝐶 be a nonempty closed convex subset of H . Then 𝜄𝐶 is the indicator function of 𝐶 , 𝑑𝐶 is the

distance function to 𝐶 , proj𝐶 is the projection operator onto 𝐶 , 𝐶⊖ is the polar cone of 𝐶 , and 𝑁𝐶 is
the normal cone operator of 𝐶 .
Let 𝑇 : H → H and 𝜏 ∈ ]0, +∞[. Then 𝑇 is nonexpansive if it is 1-Lipschitzian, 𝜏-averaged if

𝜏 ∈ ]0, 1[ and IdH + 𝜏−1(𝑇 − IdH ) is nonexpansive, 𝜏-cocoercive if

(∀𝑥 ∈ H)(∀𝑦 ∈ H) ⟨𝑥 − 𝑦 |𝑇𝑥 −𝑇𝑦⟩H ⩾ 𝜏 ∥𝑇𝑥 −𝑇𝑦∥2H , (2.1)

and 𝑇 is firmly nonexpansive if it is 1-cocoercive.
Let 𝐴 : H → 2H . The domain of 𝐴 is dom𝐴 =

{
𝑥 ∈ H | 𝐴𝑥 ≠ ∅

}
, the range of 𝐴 is

ran𝐴 =
⋃

𝑥∈dom𝐴𝐴𝑥 , the set of zeros of 𝐴 is zer𝐴 =
{
𝑥 ∈ H | 0 ∈ 𝐴𝑥

}
, and the graph of 𝐴 is

gra𝐴 =
{
(𝑥, 𝑥∗) ∈ H ×H | 𝑥∗ ∈ 𝐴𝑥

}
. The inverse of 𝐴 is the operator 𝐴−1 : H → 2H with graph

gra𝐴−1 =
{
(𝑥∗, 𝑥) ∈ H ×H | 𝑥∗ ∈ 𝐴𝑥

}
. The resolvent of𝐴 is 𝐽𝐴 = (IdH+𝐴)−1, and the Yosida approx-

imation of𝐴 of index𝛾 ∈ ]0, +∞[ is 𝛾𝐴 = (IdH − 𝐽𝛾𝐴)/𝛾 = (𝛾 IdH +𝐴−1)−1. Suppose that𝐴 is monotone
(see (1.1)). Then𝐴 is maximally monotone if there exists no monotone operator 𝐵 : H → 2H such that
gra𝐴 ⊂ gra𝐵 ≠ gra𝐴. In this case, dom 𝐽𝐴 = H , 𝐽𝐴 is firmly nonexpansive, and for every 𝑥 ∈ dom𝐴,
𝐴𝑥 is nonempty, closed, and convex, and we set 0𝐴𝑥 = proj𝐴𝑥 0.

We denote by 𝛤0(H) the class of functions 𝑓 : H → ]−∞, +∞] which are lower semicontinuous,
convex, and such that dom 𝑓 =

{
𝑥 ∈ H | 𝑓 (𝑥) < +∞

}
≠ ∅. Let 𝑓 ∈ 𝛤0(H). The conjugate of 𝑓 is

𝛤0(H) ∋ 𝑓 ∗ : 𝑥∗ ↦→ sup𝑥∈H (⟨𝑥 | 𝑥∗⟩H − 𝑓 (𝑥)) and the subdifferential of 𝑓 is the maximally monotone
operator

𝜕𝑓 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H | (∀𝑦 ∈ H) ⟨𝑦 − 𝑥 | 𝑥∗⟩H + 𝑓 (𝑥) ⩽ 𝑓 (𝑦)

}
. (2.2)

The proximity operator prox𝑓 = 𝐽𝜕𝑓 of 𝑓 maps every 𝑥 ∈ H to the unique minimizer of the function
H → ]−∞, +∞] : 𝑦 ↦→ 𝑓 (𝑦) + ∥𝑥 − 𝑦∥2H/2, the Moreau envelope of 𝑓 of index𝛾 ∈ ]0, +∞[ is 𝛾 𝑓 : H →
R : 𝑥 ↦→ min𝑦∈H (𝑓 (𝑦) + ∥𝑥 − 𝑦∥2H/(2𝛾)), and rec 𝑓 is the recession function of 𝑓 .
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2.2. Integrals of set-valued mappings

Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space and let H be a separable real Hilbert space. For
every 𝑝 ∈ [1, +∞[, set

L 𝑝
(
𝛺,F, 𝜇;H

)
=

{
𝑥 : 𝛺 → H

���� 𝑥 is (F,BH)-measurable and
∫

𝛺

∥𝑥 (𝜔)∥𝑝H 𝜇 (𝑑𝜔) < +∞
}
, (2.3)

where BH stands for the Borel 𝜎-algebra of H. The Lebesgue (also called Bochner [25]) integral of a
mapping 𝑥 ∈ L 1(𝛺,F, 𝜇;H) is denoted by

∫

𝛺 𝑥 (𝜔)𝜇 (𝑑𝜔). We denote by 𝐿𝑝 (𝛺,F, 𝜇;H) the space of
equivalence classes of 𝜇-a.e. equal mappings in L 𝑝 (𝛺,F, 𝜇;H); see [36, Section V.§7] for background.
The Aumann integral of a set-valued mapping 𝑋 : 𝛺 → 2H is
∫

𝛺

𝑋 (𝜔)𝜇 (𝑑𝜔) =
{
∫

𝛺

𝑥 (𝜔)𝜇 (𝑑𝜔)
���� 𝑥 ∈ L 1 (𝛺,F, 𝜇;H

)
and (∀𝜇𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ 𝑋 (𝜔)

}
. (2.4)

2.3. Hilbert direct integrals of Hilbert spaces

Going back to Definition 1.1 and Assumption 1.2, the following examples of Hilbert direct integrals
will be used repeatedly.

Example 2.1. Here are instances of measurable vector fields and Hilbert direct integrals based on
[20, Exemples on pp. 142–143 and 148].

(i) Let 𝑝 ∈ N ∖ {0} and let (𝛼𝑘 )1⩽𝑘⩽𝑝 ∈ ]0, +∞[𝑝 . Set

𝛺 = {1, . . . , 𝑝}, F = 2{1,...,𝑝}, and
(
∀𝑘 ∈ {1, . . . , 𝑝}

)
𝜇
(
{𝑘}

)
= 𝛼𝑘 . (2.5)

Let (H𝑘 )1⩽𝑘⩽𝑝 be separable real Hilbert spaces and let𝔊 = H1 × · · · ×H𝑝 be the usual Cartesian
product vector space. Then ((H𝑘 )1⩽𝑘⩽𝑝 ,𝔊) is anF-measurable vector field of real Hilbert spaces
and 𝔊∫ ⊕

𝛺 H𝜔𝜇 (𝑑𝜔) is the weighted Hilbert direct sum of (H𝑘 )1⩽𝑘⩽𝑝 , that is, the Hilbert space
obtained by equipping𝔊 with the scalar product(

(x𝑘 )1⩽𝑘⩽𝑝 , (y𝑘 )1⩽𝑘⩽𝑝
)
↦→

𝑝∑︁
𝑘=1

𝛼𝑘 ⟨x𝑘 | y𝑘⟩H𝑘
. (2.6)

(ii) In the setting of (i), suppose that (∀𝑘 ∈ {1, . . . , 𝑝}) 𝛼𝑘 = 1. Then

𝔊∫ ⊕

𝛺

H𝜔𝜇 (𝑑𝜔) = H1 ⊕ · · · ⊕ H𝑝 (2.7)

is the standard Hilbert direct sum of (H𝑘 )1⩽𝑘⩽𝑝 .
(iii) Let (𝛼𝑘 )𝑘∈N be a sequence in ]0, +∞[ and set

𝛺 = N, F = 2N, and (∀𝑘 ∈ N) 𝜇
(
{𝑘}

)
= 𝛼𝑘 . (2.8)

Let (H𝑘 )𝑘∈N be separable real Hilbert spaces and set 𝔊 =
∏

𝑘∈NH𝑘 . Then ((H𝑘 )𝑘∈N,𝔊) is an
F-measurable vector field of real Hilbert spaces and 𝔊∫ ⊕

𝛺 H𝜔𝜇 (𝑑𝜔) is the Hilbert space obtained
by equipping the vector space

ℌ =

{
(x𝑘 )𝑘∈N ∈𝔊

���� ∑︁
𝑘∈N

𝛼𝑘 ∥x𝑘 ∥2H𝑘
< +∞

}
(2.9)
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with the scalar product(
(x𝑘 )𝑘∈N, (y𝑘 )𝑘∈N

)
↦→

∑︁
𝑘∈N

𝛼𝑘 ⟨x𝑘 | y𝑘⟩H𝑘
. (2.10)

(iv) Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space, let H be a separable real Hilbert space, and
set [

(∀𝜔 ∈ 𝛺) H𝜔 = H
]

and 𝔊 =
{
𝑥 : 𝛺 → H | 𝑥 is (F,BH)-measurable

}
. (2.11)

Then ((H𝜔 )𝜔∈𝛺 ,𝔊) is an F-measurable vector field of real Hilbert spaces and
𝔊∫ ⊕

𝛺

H𝜔𝜇 (𝑑𝜔) = 𝐿2
(
𝛺,F, 𝜇;H

)
. (2.12)

The following results are given as remarks in [20, Section II.§1.3]. We provide proofs for complete-
ness.

Lemma 2.2. Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space and let ((H𝜔 )𝜔∈𝛺 ,𝔊) be an F-
measurable vector field of Hilbert spaces. Then the following hold:

(i) Let 𝑥 and 𝑦 be in𝔊. Then the function 𝛺 → R : 𝜔 ↦→ ⟨𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔
is F-measurable.

(ii) Let 𝑥 ∈ ∏
𝜔∈𝛺 H𝜔 and 𝑦 ∈𝔊 be such that 𝑥 = 𝑦 𝜇-a.e. Then 𝑥 ∈𝔊.

(iii) Let 𝜉 : 𝛺 → R be F-measurable and let 𝑥 ∈𝔊. Then the mapping 𝜉𝑥 : 𝜔 ↦→ 𝜉 (𝜔)𝑥 (𝜔) lies in𝔊.
(iv) Let (𝑥𝑛)𝑛∈N be a sequence in𝔊 and let 𝑥 ∈ ∏

𝜔∈𝛺 H𝜔 . Suppose that (∀𝜇𝜔 ∈ 𝛺) 𝑥𝑛 (𝜔) ⇀ 𝑥 (𝜔).
Then 𝑥 ∈𝔊.

(v) There exists a sequence (𝑢𝑛)𝑛∈N in𝔊 such that
(∀𝑛 ∈ N)
∫

𝛺

∥𝑢𝑛 (𝜔)∥2H𝜔
𝜇 (𝑑𝜔) < +∞

(∀𝜔 ∈ 𝛺)
{
𝑢𝑛 (𝜔)

}
𝑛∈N = H𝜔 .

(2.13)

Proof. (i): Since 𝔊 is a vector subspace of
∏

𝜔∈𝛺 H𝜔 , 𝑥 + 𝑦 ∈ 𝔊 and 𝑥 − 𝑦 ∈ 𝔊. Hence, by prop-
erty [A] in Definition 1.1, the functions 𝛺 → R : 𝜔 ↦→ ∥𝑥 (𝜔) + 𝑦 (𝜔)∥H𝜔

and 𝛺 → R : 𝜔 ↦→
∥𝑥 (𝜔) − 𝑦 (𝜔)∥H𝜔

are F-measurable. Therefore, the assertion follows from the polarization identity
(∀𝜔 ∈ 𝛺) 4⟨𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔

= ∥𝑥 (𝜔) + 𝑦 (𝜔)∥2H𝜔
− ∥𝑥 (𝜔) − 𝑦 (𝜔)∥2H𝜔

.
(ii): Take 𝑧 ∈ 𝔊. Then (∀𝜇𝜔 ∈ 𝛺) ⟨𝑥 (𝜔) | 𝑧 (𝜔)⟩H𝜔

= ⟨𝑦 (𝜔) | 𝑧 (𝜔)⟩H𝜔
. At the same time, since 𝑦

and 𝑧 lie in𝔊, we deduce from (i) that the function 𝛺 → R : 𝜔 ↦→ ⟨𝑦 (𝜔) | 𝑧 (𝜔)⟩H𝜔
is F-measurable.

Hence, the completeness of (𝛺,F, 𝜇) implies that the function 𝛺 → R : 𝜔 ↦→ ⟨𝑥 (𝜔) | 𝑧 (𝜔)⟩H𝜔
is also

F-measurable. Consequently, property [B] in Definition 1.1 forces 𝑥 ∈𝔊.
(iii): We have 𝜉𝑥 ∈ ∏

𝜔∈𝛺 H𝜔 . On the other hand, for every 𝑦 ∈ 𝔊, it results from (i) that the
function 𝜔 ↦→ ⟨𝜉 (𝜔)𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔

= 𝜉 (𝜔)⟨𝑥 (𝜔) |𝑦 (𝜔)⟩H𝜔
is F-measurable. Hence, we conclude via

property [B] in Definition 1.1 that 𝜉𝑥 ∈𝔊.
(iv): Let 𝛯 ∈ F be such that 𝜇 (𝛯) = 0 and (∀𝜔 ∈ ∁𝛯) 𝑥𝑛 (𝜔) ⇀ 𝑥 (𝜔). Moreover, set[

(∀𝑛 ∈ N) 𝑦𝑛 = 1∁𝛯𝑥𝑛
]

and 𝑦 = 1∁𝛯𝑥, (2.14)

and let 𝑧 ∈𝔊. For every 𝑛 ∈ N, it results from (iii) that 𝑦𝑛 ∈𝔊 and, in turn, from (i) that the function
𝛺 → R : 𝜔 ↦→ ⟨𝑦𝑛 (𝜔) | 𝑧 (𝜔)⟩H𝜔

is F-measurable. Additionally,

(∀𝜔 ∈ 𝛯) lim⟨𝑦𝑛 (𝜔) | 𝑧 (𝜔)⟩H𝜔
= 0 = ⟨𝑦 (𝜔) | 𝑧 (𝜔)⟩H𝜔

(2.15)
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and (
∀𝜔 ∈ ∁𝛯

)
lim⟨𝑦𝑛 (𝜔) | 𝑧 (𝜔)⟩H𝜔

= lim⟨𝑥𝑛 (𝜔) | 𝑧 (𝜔)⟩H𝜔
= ⟨𝑥 (𝜔) | 𝑧 (𝜔)⟩H𝜔

= ⟨𝑦 (𝜔) | 𝑧 (𝜔)⟩H𝜔
.

(2.16)

Hence, the function 𝛺 → R : 𝜔 ↦→ ⟨𝑦 (𝜔) | 𝑧 (𝜔)⟩H𝜔
is F-measurable as the pointwise limit of a se-

quence of F-measurable functions. Therefore, appealing to property [B] in Definition 1.1, we deduce
that 𝑦 ∈𝔊. Consequently, since 𝑥 = 𝑦 𝜇-a.e., (ii) yields 𝑥 ∈𝔊.

(v): Property [C] in Definition 1.1 guarantees the existence of a sequence (𝑒𝑛)𝑛∈N in 𝔊 such that
(∀𝜔 ∈ 𝛺) span{𝑒𝑛 (𝜔)}𝑛∈N = H𝜔 . Now let (𝑟𝑛)𝑛∈N be an enumeration of the set{

𝑛∑︁
𝑘=0

𝛼𝑘𝑒𝑘

����� 𝑛 ∈ N and (𝛼𝑘 )0⩽𝑘⩽𝑛 ∈ Q𝑛+1
}
. (2.17)

Then

(∀𝑛 ∈ N) 𝑟𝑛 ∈𝔊 (2.18)

and

(∀𝜔 ∈ 𝛺)
{
𝑟𝑛 (𝜔)

}
𝑛∈N = H𝜔 . (2.19)

Since (𝛺,F, 𝜇) is 𝜎-finite, we obtain an increasing sequence (𝛺𝑘 )𝑘∈N in F of finite 𝜇-measure such
that

⋃
𝑘∈N𝛺𝑘 = 𝛺 . Set

(∀𝑛 ∈ N) (∀𝑚 ∈ N) (∀𝑘 ∈ N) 𝛯𝑛,𝑚,𝑘 =
{
𝜔 ∈ 𝛺𝑘 | ∥𝑟𝑛 (𝜔)∥H𝜔

⩽ 𝑚
}

and 𝑠𝑛,𝑚,𝑘 = 1𝛯𝑛,𝑚,𝑘
𝑟𝑛 . (2.20)

For every 𝑛 ∈ N, it results from (2.18) and property [A] in Definition 1.1 that the function 𝛺 →
R : 𝜔 ↦→ ∥𝑟𝑛 (𝜔)∥H𝜔

is F-measurable. Therefore, for every 𝑛 ∈ N, every 𝑚 ∈ N, and every 𝑘 ∈ N,
𝛯𝑛,𝑚,𝑘 ∈ F and we thus infer from (iii) and (2.18) that 𝑠𝑛,𝑚,𝑘 ∈𝔊 whereas, by (2.20),
∫

𝛺

∥𝑠𝑛,𝑚,𝑘 (𝜔)∥2H𝜔
𝜇 (𝑑𝜔) ⩽ 𝜇 (𝛯𝑛,𝑚,𝑘 )𝑚 ⩽ 𝜇 (𝛺𝑘 )𝑚 < +∞. (2.21)

Next, take 𝜔 ∈ 𝛺 , x ∈ H𝜔 , and 𝜀 ∈ ]0, 1[. By (2.19), there exists 𝑛 ∈ N such that ∥𝑟𝑛 (𝜔) − x∥H𝜔
⩽ 𝜀. In

turn, the triangle inequality gives ∥𝑟𝑛 (𝜔)∥H𝜔
⩽ 𝜀 + ∥x∥H𝜔

. However, since
⋃

𝑘∈N𝛺𝑘 = 𝛺 , there exists
𝑘 ∈ N such that 𝜔 ∈ 𝛺𝑘 . Therefore, upon choosing𝑚 ∈ N such that𝑚 ⩾ 𝜀 + ∥x∥H𝜔

, we deduce that
𝜔 ∈ 𝛯𝑛,𝑚,𝑘 . Thus, combining with (2.20) yields ∥𝑠𝑛,𝑚,𝑘 (𝜔) − x∥H𝜔

= ∥𝑟𝑛 (𝜔) − x∥H𝜔
⩽ 𝜀.

Lemma 2.3 ([20, Proposition II.§1.5(ii)]). Suppose that Assumption 1.2 is in force and let (𝑥𝑛)𝑛∈N be a
sequence inH which converges strongly to a point 𝑥 ∈ H . Then there exists a strictly increasing sequence
(𝑘𝑛)𝑛∈N in N such that (∀𝜇𝜔 ∈ 𝛺) 𝑥𝑘𝑛 (𝜔) → 𝑥 (𝜔).

§3. Hilbert direct integrals of set-valued operators

We study the properties of the Hilbert direct integrals of set-valued operators introduced in Defini-
tion 1.3. Let us first point out an important special case of Definition 1.3.
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Definition 3.1. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let C𝜔 be a subset of
H𝜔 . The Hilbert direct integral of the sets (C𝜔 )𝜔∈𝛺 relative to𝔊 is

𝔊∫ ⊕

𝛺

C𝜔𝜇 (𝑑𝜔) =
{
𝑥 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ C𝜔

}
. (3.1)

We first record the following facts, which are direct consequences of Definitions 1.3 and 3.1.

Proposition 3.2. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let A𝜔 : H𝜔 → 2H𝜔 be
a set-valued operator. Set

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔) . (3.2)

Then the following hold:

(i) dom𝐴 =
{
𝑥 ∈ H | (∃ 𝑥∗ ∈ ℌ) (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔 (𝑥 (𝜔))

}
.

(ii) ran𝐴 =
{
𝑥∗ ∈ H | (∃ 𝑥 ∈ ℌ) (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔 (𝑥 (𝜔))

}
.

(iii) zer𝐴 =
𝔊∫ ⊕

𝛺

zerA𝜔 𝜇 (𝑑𝜔).

(iv) 𝐴−1 =
𝔊∫ ⊕

𝛺

A−1
𝜔 𝜇 (𝑑𝜔).

(v) Suppose that, for every 𝜔 ∈ 𝛺 , A𝜔 is monotone. Then 𝐴 is monotone.

Remark 3.3. Regarding Proposition 3.2(i), consider the setting of Example 2.1(iii) and suppose that,
in addition, (∀𝑘 ∈ N) H𝑘 = R. For every 𝑘 ∈ N, set A𝑘 : H𝑘 → H𝑘 : x ↦→ 𝑘/√𝛼𝑘 . Then

dom
(
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔)
)
= ∅. (3.3)

The following result examines the interplay between the properties of the direct integral and those
of its factor operators.

Proposition 3.4. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let T𝜔 : H𝜔 → H𝜔 be
strong-to-weak continuous. Set

𝑇 =
𝔊∫ ⊕

𝛺

T𝜔𝜇 (𝑑𝜔) (3.4)

and suppose that the following are satisfied:

[A] For every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ T𝜔 (𝑥 (𝜔)) lies in𝔊.
[B] There exists 𝑧 ∈ ℌ such that the mapping 𝜔 ↦→ T𝜔 (𝑧 (𝜔)) lies in ℌ.

Then the following hold:

(i) Let 𝛽 ∈ [0, +∞[. Then the following are equivalent:

(a) For 𝜇-almost every 𝜔 ∈ 𝛺 , T𝜔 is 𝛽-Lipschitzian.
(b) dom𝑇 = H and 𝑇 is 𝛽-Lipschitzian.

(ii) Let 𝜏 ∈ ]0, +∞[. Then the following are equivalent:
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(a) For 𝜇-almost every 𝜔 ∈ 𝛺 , T𝜔 is 𝜏-cocoercive.
(b) dom𝑇 = H and 𝑇 is 𝜏-cocoercive.

(iii) Let 𝛼 ∈ ]0, 1[. Then the following are equivalent:

(a) For 𝜇-almost every 𝜔 ∈ 𝛺 , T𝜔 is 𝛼-averaged.
(b) dom𝑇 = H and 𝑇 is 𝛼-averaged.

Proof. Observe that 𝑇 is at most single-valued. On the other hand, Lemma 2.2(v) states that there
exists a sequence (𝑢𝑛)𝑛∈N in ℌ such that

(∀𝜔 ∈ 𝛺)
{
𝑢𝑛 (𝜔)

}
𝑛∈N = H𝜔 . (3.5)

(i)(a)⇒(i)(b): Let 𝛯 ∈ F be such that 𝜇 (𝛯) = 0 and, for every 𝜔 ∈ ∁𝛯 , T𝜔 is 𝛽-Lipschitzian. Then

(∀𝑥 ∈ ℌ) (∀𝑦 ∈ ℌ)
(
∀𝜔 ∈ ∁𝛯

) 

T𝜔 (𝑥 (𝜔)) − T𝜔
(
𝑦 (𝜔)

)


H𝜔
⩽ 𝛽 ∥𝑥 (𝜔) − 𝑦 (𝜔)∥H𝜔

. (3.6)

In turn, since𝔊 is a vector subspace of
∏

𝜔∈𝛺 H𝜔 , we infer from [A] and (1.6) that, for every 𝑥 ∈ ℌ

and every 𝑦 ∈ ℌ, the mapping 𝜔 ↦→ T𝜔 (𝑥 (𝜔)) − T𝜔 (𝑦 (𝜔)) lies in ℌ. Thus, [B] implies that, for
every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ T𝜔 (𝑥 (𝜔)) lies in ℌ as the sum of two mappings in ℌ, namely
𝜔 ↦→ T𝜔 (𝑥 (𝜔)) − T𝜔 (𝑧 (𝜔)) and 𝜔 ↦→ T𝜔 (𝑧 (𝜔)). Therefore dom𝑇 = H . Additionally, it results from
(3.6) and (1.7) that 𝑇 is 𝛽-Lipschitzian.

(i)(b)⇒(i)(a): Fix temporarily 𝑛 ∈ N and 𝑚 ∈ N. For every 𝛯 ∈ F such that 𝜇 (𝛯) < +∞, since
1𝛯𝑢𝑛 ∈ ℌ and 1𝛯𝑢𝑚 ∈ ℌ thanks to Lemma 2.2(iii), we derive from (1.7) that
∫

𝛯



T𝜔 (𝑢𝑛 (𝜔)) − T𝜔
(
𝑢𝑚 (𝜔)

)

2
H𝜔

𝜇 (𝑑𝜔) = ∥𝑇 (1𝛯𝑢𝑛) −𝑇 (1𝛯𝑢𝑚)∥2H

⩽ 𝛽2∥1𝛯𝑢𝑛 − 1𝛯𝑢𝑚 ∥2H
=

∫

𝛯

𝛽2∥𝑢𝑛 (𝜔) − 𝑢𝑚 (𝜔)∥2H𝜔
𝜇 (𝑑𝜔) . (3.7)

Hence, since (𝛺,F, 𝜇) is 𝜎-finite, there exists 𝛯𝑛,𝑚 ∈ F such that

𝜇
(
𝛯𝑛,𝑚

)
= 0 and

(
∀𝜔 ∈ ∁𝛯𝑛,𝑚

) 

T𝜔 (𝑢𝑛 (𝜔)) − T𝜔
(
𝑢𝑚 (𝜔)

)


H𝜔
⩽ 𝛽 ∥𝑢𝑛 (𝜔) − 𝑢𝑚 (𝜔)∥H𝜔

. (3.8)

Now set 𝛯 =
⋃

𝑛∈N,𝑚∈N𝛯𝑛,𝑚 , let 𝜔 ∈ ∁𝛯 , let x ∈ H𝜔 , and let y ∈ H𝜔 . Then, 𝛯 ∈ F with 𝜇 (𝛯) = 0 and,
in view of (3.5), there exist sequences (𝑘𝑛)𝑛∈N and (𝑙𝑛)𝑛∈N inN such that𝑢𝑘𝑛 (𝜔) → x and𝑢𝑙𝑛 (𝜔) → y.
At the same time, by (3.8),

(∀𝑛 ∈ N)


T𝜔 (𝑢𝑘𝑛 (𝜔)) − T𝜔

(
𝑢𝑙𝑛 (𝜔)

)


H𝜔
⩽ 𝛽 ∥𝑢𝑘𝑛 (𝜔) − 𝑢𝑙𝑛 (𝜔)∥H𝜔

. (3.9)

Thus, since ∥ · ∥H𝜔
is weakly lower semicontinuous, letting 𝑛 → +∞ and invoking the strong-to-weak

continuity of T𝜔 , we get ∥T𝜔x − T𝜔y∥H𝜔
⩽ 𝛽 ∥x − y∥H𝜔

.
(ii) and (iii): Argue as in (i).

Proposition 3.5. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let A𝜔 : H𝜔 → 2H𝜔 be
a set-valued operator. Set

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔) (3.10)

and let 𝛾 ∈ ]0, +∞[. Then

𝐽𝛾𝐴 =
𝔊∫ ⊕

𝛺

𝐽𝛾A𝜔
𝜇 (𝑑𝜔) and 𝛾𝐴 =

𝔊∫ ⊕

𝛺

𝛾A𝜔 𝜇 (𝑑𝜔). (3.11)
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Proof. Set 𝑇 =
𝔊∫ ⊕

𝛺 𝐽𝛾A𝜔
𝜇 (𝑑𝜔). We derive from Definition 1.3 and [3, Proposition 23.2(ii)] that

(∀𝑥 ∈ H) 𝑇𝑥 =
{
𝑝 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑝 (𝜔) ∈ 𝐽𝛾A𝜔

(
𝑥 (𝜔)

)}
=
{
𝑝 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝛾−1

(
𝑥 (𝜔) − 𝑝 (𝜔)

)
∈ A𝜔

(
𝑝 (𝜔)

)}
=
{
𝑝 ∈ H | 𝛾−1(𝑥 − 𝑝) ∈ 𝐴𝑝

}
= 𝐽𝛾𝐴𝑥 . (3.12)

Likewise, upon setting𝑅 =
𝔊∫ ⊕

𝛺
𝛾A𝜔 𝜇 (𝑑𝜔), we deduce fromDefinition 1.3 and [3, Proposition 23.2(iii)]

that

(∀𝑥 ∈ H) 𝑅𝑥 =
{
𝑝 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑝 (𝜔) ∈ 𝛾A𝜔

(
𝑥 (𝜔)

)}
=
{
𝑝 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑝 (𝜔) ∈ A𝜔

(
𝑥 (𝜔) − 𝛾𝑝 (𝜔)

)}
=
{
𝑝 ∈ H | 𝑝 ∈ 𝐴(𝑥 − 𝛾𝑝)

}
= 𝛾𝐴𝑥, (3.13)

which completes the proof.

Assumption 3.6. Assumption 1.2 and the following are in force:

[A] For every 𝜔 ∈ 𝛺 , A𝜔 : H𝜔 → 2H𝜔 is maximally monotone.
[B] For every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ 𝐽A𝜔

(𝑥 (𝜔)) lies in𝔊.
[C] dom𝔊∫ ⊕

𝛺 A𝜔𝜇 (𝑑𝜔) ≠ ∅.

Proposition 3.7. Suppose that Assumption 3.6 is in force. Then the following hold:

(i) For every 𝜔 ∈ 𝛺 , A−1
𝜔 : H𝜔 → 2H𝜔 is maximally monotone.

(ii) For every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ 𝐽A−1
𝜔
(𝑥 (𝜔)) lies in𝔊.

(iii) dom𝔊∫ ⊕
𝛺 A−1

𝜔 𝜇 (𝑑𝜔) ≠ ∅.

Proof. We infer from Assumption 3.6[A] and [3, Propositions 20.22 and 23.20] that, for every 𝜔 ∈ 𝛺 ,
A−1
𝜔 is maximallymonotone and 𝐽A−1

𝜔
= IdH𝜔

−𝐽A𝜔
. In turn, for every 𝑥 ∈ ℌ, since𝔊 is a vector subspace

of
∏

𝜔∈𝛺 H𝜔 , it follows from Assumption 3.6[B] that the mapping 𝜔 ↦→ 𝐽A−1
𝜔
(𝑥 (𝜔)) lies in𝔊 as the

difference of the mappings 𝑥 and 𝜔 ↦→ 𝐽A𝜔
(𝑥 (𝜔)). Finally, Proposition 3.2(iv) and Assumption 3.6[C]

yield dom𝔊∫ ⊕
𝛺 A−1

𝜔 𝜇 (𝑑𝜔) = ran𝔊∫ ⊕
𝛺 A𝜔𝜇 (𝑑𝜔) ≠ ∅.

The main result of this section is the following theorem, which establishes the main properties of
Hilbert direct integrals of maximally monotone operators. Special cases of items (i) and (ii) corre-
sponding to scenarios described in Example 2.1 can be found in [1, 3, 6, 18, 32].

Theorem 3.8. Suppose that Assumption 3.6 is in force and set

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔). (3.14)

Then the following hold:

(i) 𝐴 is maximally monotone.
(ii) Let 𝛾 ∈ ]0, +∞[ and 𝑥 ∈ ℌ. Then the following are satisfied:
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(a) The mapping 𝜔 ↦→ 𝐽𝛾A𝜔
(𝑥 (𝜔)) lies in ℌ and 𝐽𝛾𝐴𝑥 =

𝔊∫ ⊕

𝛺

𝐽𝛾A𝜔

(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔).

(b) The mapping 𝜔 ↦→ 𝛾A𝜔 (𝑥 (𝜔)) lies in ℌ and 𝛾𝐴𝑥 =
𝔊∫ ⊕

𝛺

𝛾A𝜔

(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔).

(iii) dom𝐴 =
𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔).

(iv) ran𝐴 =
𝔊∫ ⊕

𝛺

ranA𝜔 𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

ranA𝜔 𝜇 (𝑑𝜔).

(v) Let 𝑥 ∈ ℌ be such that (∀𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ domA𝜔 . Then the following are satisfied:

(a) The mapping 𝜔 ↦→ 0A𝜔 (𝑥 (𝜔)) lies in𝔊.
(b) Suppose that 𝑥 ∈ dom𝐴. Then the mapping 𝜔 ↦→ 0A𝜔 (𝑥 (𝜔)) lies in ℌ and 0𝐴𝑥 =

𝔊∫ ⊕

𝛺

0A𝜔

(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔).

Proof. (i): By [3, Proposition 23.2(i)] and Assumption 3.6[C], ran 𝐽𝐴 = dom𝐴 ≠ ∅ and there thus ex-
ist 𝑧 and 𝑟 in H such that 𝑟 ∈ 𝐽𝐴𝑧 or, equivalently, 𝑧 − 𝑟 ∈ 𝐴𝑟 . Hence, for 𝜇-almost every 𝜔 ∈ 𝛺 ,
𝑧 (𝜔) − 𝑟 (𝜔) ∈ A𝜔 (𝑟 (𝜔)) and, therefore, the monotonicity of A𝜔 yields 𝑟 (𝜔) = 𝐽A𝜔

(𝑧 (𝜔)). Thus,
because 𝑟 ∈ ℌ, we infer from Lemma 2.2(ii) that the mapping 𝜔 ↦→ 𝐽A𝜔

(𝑧 (𝜔)) lies in ℌ. In turn, ap-
pealing to Assumption 3.6[B], we deduce from Proposition 3.4(iii) (applied to the firmly nonexpansive
operators (𝐽A𝜔

)𝜔∈𝛺 ) and Proposition 3.5 that 𝐽𝐴 : H → H is firmly nonexpansive. Consequently, [3,
Proposition 23.8(iii)] guarantees that 𝐴 is maximally monotone.
(ii): Use (i), Proposition 3.5, and Lemma 2.2(ii).
(iii): By (i) and [3, Corollary 21.14], dom𝐴 is a nonempty closed convex subset ofH . Fix temporarily

𝑥 ∈ ℌ, let (𝛾𝑛)𝑛∈N be a sequence in ]0, 1[ such that 𝛾𝑛 ↓ 0, and set

𝑝 = projdom𝐴
𝑥 and (∀𝑛 ∈ N) 𝑝𝑛 : 𝜔 ↦→ 𝐽𝛾𝑛A𝜔

(
𝑥 (𝜔)

)
. (3.15)

We infer from (ii)(a) that, for every 𝑛 ∈ N, 𝑝𝑛 ∈ ℌ and 𝑝𝑛 = 𝐽𝛾𝑛𝐴𝑥 . Thus, it follows from (i) and [3,
Theorem 23.48] that 𝑝𝑛 → 𝑝 in H . In turn, Lemma 2.3 ensures that there exist a strictly increasing
sequence (𝑘𝑛)𝑛∈N in N and a set 𝛯 ∈ F such that 𝜇 (𝛯) = 0 and (∀𝜔 ∈ ∁𝛯) 𝑝𝑘𝑛 (𝜔) → 𝑝 (𝜔). On the
other hand, we deduce from Assumption 3.6[A] and [3, Theorem 23.48] that (∀𝜔 ∈ ∁𝛯) 𝑝𝑘𝑛 (𝜔) =

𝐽𝛾𝑘𝑛A𝜔
(𝑥 (𝜔)) → projdomA𝜔

(𝑥 (𝜔)). Therefore (∀𝜔 ∈ ∁𝛯) 𝑝 (𝜔) = projdomA𝜔
(𝑥 (𝜔)). Hence, because

𝑝 ∈ ℌ, it results from Lemma 2.2(ii) that the mapping 𝜔 ↦→ projdomA𝜔
(𝑥 (𝜔)) is a representative in ℌ

of projdom𝐴
𝑥 . This confirms that

projdom𝐴
=

𝔊∫ ⊕

𝛺

projdomA𝜔
𝜇 (𝑑𝜔) . (3.16)

Therefore, using Definition 3.1, we get

dom𝐴 =
{
𝑥 ∈ H | 𝑥 = projdom𝐴

𝑥
}

=

{
𝑥 ∈ H

��� (∀𝜇𝜔 ∈ 𝛺) 𝑥 (𝜔) = projdomA𝜔

(
𝑥 (𝜔)

)}
=
{
𝑥 ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ domA𝜔

}
=

𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔). (3.17)
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Thus 𝔊∫ ⊕
𝛺 domA𝜔 𝜇 (𝑑𝜔) is a closed subset ofH . Consequently, we deduce from Proposition 3.2(i) and

Definition 3.1 that

dom𝐴 ⊂
𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔) ⊂
𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔) = dom𝐴, (3.18)

which furnishes the desired identities.
(iv): In the light of Proposition 3.2(iv) and Proposition 3.7, the claim follows from (iii) applied to the

family (A−1
𝜔 )𝜔∈𝛺 .

(v): Let (𝛾𝑛)𝑛∈N be a sequence in ]0, 1[ such that 𝛾𝑛 ↓ 0, and set

𝑝 : 𝜔 ↦→ 0A𝜔

(
𝑥 (𝜔)

)
and (∀𝑛 ∈ N) 𝑝𝑛 : 𝜔 ↦→ 𝛾𝑛A𝜔

(
𝑥 (𝜔)

)
. (3.19)

Then, on account of (ii)(b),

(∀𝑛 ∈ N) 𝑝𝑛 ∈ ℌ and 𝑝𝑛 = 𝛾𝑛𝐴𝑥. (3.20)

(v)(a): For every𝜔 ∈ 𝛺 , sinceA𝜔 is maximally monotone and 𝑥 (𝜔) ∈ domA𝜔 , [3, Corollary 23.46(i)]
yields 𝑝𝑛 (𝜔) → 𝑝 (𝜔). Hence, thanks to Lemma 2.2(iv), we obtain 𝑝 ∈𝔊.

(v)(b): Set 𝑞 = 0𝐴𝑥 . It follows from (3.20), (i), and [3, Corollary 23.46(i)] that 𝑝𝑛 → 𝑞 inH . Thus, we
infer from Lemma 2.3 that there exists a strictly increasing sequence (𝑘𝑛)𝑛∈N inN such that (∀𝜇𝜔 ∈ 𝛺)
𝑝𝑘𝑛 (𝜔) → 𝑞(𝜔). In turn, 𝑝 = 𝑞 𝜇-a.e. and we conclude by invoking Lemma 2.2(ii).

Example 3.9. Consider the setting of Example 2.1(iii) and suppose that, in addition, (∀𝑘 ∈ N) 𝛼𝑘 = 1
and H𝑘 = R. Then H = ℓ2(N). Now define (∀𝑘 ∈ N) A𝑘 : H𝑘 → H𝑘 : x ↦→ 2𝑘x. Then

dom
(
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔)
)
=

{
(x𝑘 )𝑘∈N ∈ ℓ2(N)

����� ∑︁
𝑘∈N

4𝑘 |x𝑘 |2 < +∞
}
≠ ℓ2(N) =

𝔊∫ ⊕

𝛺

domA𝜔 𝜇 (𝑑𝜔). (3.21)

The closure operation in items (iii) and (iv) in Theorem 3.8 can therefore not be omitted.

Corollary 3.10. Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space, let H be a separable real Hilbert
space, and for every 𝜔 ∈ 𝛺 , let A𝜔 : H → 2H be maximally monotone. SetH = 𝐿2(𝛺,F, 𝜇;H) and

𝐴 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔

(
𝑥 (𝜔)

)}
. (3.22)

Suppose that dom𝐴 ≠ ∅. Then the following are equivalent:

(i) 𝐴 is maximally monotone.
(ii) For every x ∈ H, the mapping 𝛺 → H : 𝜔 ↦→ 𝐽A𝜔

x is (F,BH)-measurable.
(iii) For every open set V in H ⊕ H,

{
𝜔 ∈ 𝛺 | V ∩ graA𝜔 ≠ ∅

}
∈ F.

Proof. In the light of Example 2.1(iv),H is the Hilbert direct integral of the F-measurable vector field
((H𝜔 )𝜔∈𝛺 ,𝔊) defined by[

(∀𝜔 ∈ 𝛺) H𝜔 = H
]

and 𝔊 =
{
𝑥 : 𝛺 → H | 𝑥 is (F,BH)-measurable

}
. (3.23)

Additionally, by (3.22),

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔). (3.24)
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(i)⇒(ii):We have dom𝐴 ≠ ∅ and 𝐽𝐴 : H → H [3, Corollary 23.11(i)]. Thus, invoking Proposition 3.5
and Lemma 2.2(ii), we deduce that(

∀𝑥 ∈ L 2 (𝛺,F, 𝜇;H
) )

the mapping 𝛺 → H : 𝜔 ↦→ 𝐽A𝜔

(
𝑥 (𝜔)

)
lies in L 2 (𝛺,F, 𝜇;H

)
. (3.25)

Next, take x ∈ H. Since (𝛺,F, 𝜇) is 𝜎-finite, there exists an increasing sequence (𝛺𝑛)𝑛∈N in F of
finite 𝜇-measure such that

⋃
𝑛∈N𝛺𝑛 = 𝛺 . In turn, {1𝛺𝑛

x}𝑛∈N ⊂ L 2(𝛺,F, 𝜇;H) and (∀𝜔 ∈ 𝛺)
1𝛺𝑛

(𝜔)x → x. Hence, on account of (3.25), we deduce that, for every 𝑛 ∈ N, the mapping 𝛺 →
H : 𝜔 ↦→ 𝐽A𝜔

(1𝛺𝑛
(𝜔)x) is (F,BH)-measurable. In addition, the continuity of the operators (𝐽A𝜔

)𝜔∈𝛺
yields (∀𝜔 ∈ 𝛺) 𝐽A𝜔

(1𝛺𝑛
(𝜔)x) → 𝐽A𝜔

x. Altogether, it results from Lemma 2.2(iv) that the mapping
𝛺 → H : 𝜔 ↦→ 𝐽A𝜔

x is (F,BH)-measurable.
(ii)⇒(i): Applying [14, Lemma III.14] to the mapping 𝛺 × H → H : (𝜔, x) ↦→ 𝐽A𝜔

x, we deduce that,
for every 𝑥 ∈𝔊, the mapping 𝜔 ↦→ 𝐽A𝜔

(𝑥 (𝜔)) lies in𝔊. Therefore, in the setting of (3.23), the family
(A𝜔 )𝜔∈𝛺 satisfies Assumption 3.6. Consequently, we conclude via (3.24) and Theorem 3.8(i) that 𝐴 is
maximally monotone.
(ii)⇔(iii): Combine [1, Lemme 2.1] and [1, Théorème 2.1].

Remark 3.11. The implication (iii)⇒(i) in Corollary 3.10 is stated in [32, Theorem 5.1].

Proposition 3.12. Suppose that Assumption 1.2 is in force. Let G be a separable real Hilbert space and,
for every 𝜔 ∈ 𝛺 , let L𝜔 : G → H𝜔 be linear and bounded. Suppose that, for every z ∈ G, the mapping

𝔢Lz : 𝜔 ↦→ L𝜔z (3.26)

lies in𝔊. Then the following holds:

(i) The function 𝛺 → R : 𝜔 ↦→ ∥L𝜔 ∥ is F-measurable.

Suppose additionally that
∫

𝛺 ∥L𝜔 ∥2𝜇 (𝑑𝜔) < +∞ and define

𝐿 : G → H : z ↦→ 𝔢Lz. (3.27)

Then the following hold:

(ii) 𝐿 is well defined, linear, and bounded with ∥𝐿∥ ⩽
√︃
∫

𝛺 ∥L𝜔 ∥2𝜇 (𝑑𝜔).
(iii) Let 𝑥∗ ∈𝔊. Then the mapping 𝛺 → G : 𝜔 ↦→ L∗𝜔 (𝑥∗(𝜔)) is (F,BG)-measurable.
(iv) Let 𝑥∗ ∈ ℌ. Then the mapping 𝛺 → G : 𝜔 ↦→ L∗𝜔 (𝑥∗(𝜔)) is Lebesgue 𝜇-integrable.
(v) 𝐿∗ : H → G : 𝑥∗ ↦→

∫

𝛺 L∗𝜔 (𝑥∗(𝜔))𝜇 (𝑑𝜔).

Proof. (i): Let {z𝑛}𝑛∈N be a dense subset of
{
z ∈ G | ∥z∥G ⩽ 1

}
. On the one hand, property [A] in

Definition 1.1 ensures that, for every 𝑛 ∈ N, the function 𝛺 → R : 𝜔 ↦→ ∥L𝜔z𝑛 ∥H𝜔
is F-measurable.

On the other hand, thanks to the continuity of the operators (L𝜔 )𝜔∈𝛺 ,

(∀𝜔 ∈ 𝛺) ∥L𝜔 ∥ = sup
z∈G

∥z∥G⩽1

∥L𝜔z∥H𝜔
= sup

𝑛∈N
∥L𝜔z𝑛 ∥H𝜔

. (3.28)

Altogether, the function 𝛺 → R : 𝜔 ↦→ ∥L𝜔 ∥ is F-measurable.
(ii): For every z ∈ G, we deduce from (3.26) that
∫

𝛺

∥(𝔢Lz) (𝜔)∥2H𝜔
𝜇 (𝑑𝜔) =
∫

𝛺

∥L𝜔z∥2H𝜔
𝜇 (𝑑𝜔) ⩽ ∥z∥2G

∫

𝛺

∥L𝜔 ∥2𝜇 (𝑑𝜔) < +∞ (3.29)
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and, in turn, from (1.6) that 𝔢Lz ∈ ℌ. This confirms that 𝐿 is well defined. In addition, the linearity of
the operators (L𝜔 )𝜔∈𝛺 guarantees that of 𝐿. The last claims follow from (3.29) and (1.7).
(iii): For every z ∈ G, Lemma 2.2(i) implies that the function 𝛺 → R : 𝜔 ↦→ ⟨z | L∗𝜔 (𝑥∗(𝜔))⟩G =

⟨L𝜔z | 𝑥∗(𝜔)⟩H𝜔
is F-measurable. In turn, invoking the separability of G, as well as the fact that

(𝛺,F, 𝜇) is complete and 𝜎-finite, we derive from [36, Théorème 5.6.24] that the mapping 𝛺 →
G : 𝜔 ↦→ L∗𝜔 (𝑥∗(𝜔)) is (F,BG)-measurable.
(iv): By the Cauchy–Schwarz inequality,
∫

𝛺



L∗𝜔 (𝑥∗(𝜔))

G 𝜇 (𝑑𝜔) ⩽
∫

𝛺

∥L𝜔 ∥ ∥𝑥∗(𝜔)∥H𝜔
𝜇 (𝑑𝜔)

⩽

√︂
∫

𝛺

∥L𝜔 ∥2𝜇 (𝑑𝜔)
√︂
∫

𝛺

∥𝑥∗(𝜔)∥2H𝜔
𝜇 (𝑑𝜔)

< +∞. (3.30)

Hence, the assertion follows from [36, Théorème 5.7.21].
(v): Take 𝑥∗ ∈ H . It results from (1.7), (3.27), (3.26), (iv), and [36, Théorème 5.8.16] that

(∀z ∈ G) ⟨z | 𝐿∗𝑥∗⟩G = ⟨𝐿z | 𝑥∗⟩H

=

∫

𝛺

⟨L𝜔z | 𝑥∗(𝜔)⟩H𝜔
𝜇 (𝑑𝜔)

=

∫

𝛺

〈
z
�� L∗𝜔 (𝑥∗(𝜔))〉G 𝜇 (𝑑𝜔)

=

〈
z

���� ∫
𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

〉
G
, (3.31)

which completes the proof.

§4. Hilbert direct integrals of functions

We study the Hilbert direct integrals of families of functions introduced in Definition 1.4.

Lemma 4.1. Let H be a real Hilbert space and let 𝑇 : H → H . Then the following hold:

(i) There exists 𝑓 ∈ 𝛤0(H) such that 𝑇 = prox𝑓 if and only if 𝑇 is nonexpansive and cyclically
monotone, that is, for every 2 ⩽ 𝑛 ∈ N and every (𝑥1, . . . , 𝑥𝑛+1) ∈ H𝑛+1 such that 𝑥𝑛+1 = 𝑥1,

𝑛∑︁
𝑘=1

⟨𝑥𝑘+1 − 𝑥𝑘 |𝑇𝑥𝑘⟩ ⩽ 0. (4.1)

(ii) There exists a nonempty closed convex subset 𝐶 ofH such that 𝑇 = proj𝐶 if and only if

(∀𝑥 ∈ H)(∀𝑦 ∈ H) ⟨𝑇𝑦 −𝑇𝑥 | 𝑥 −𝑇𝑥⟩ ⩽ 0. (4.2)

Proof. (i): The core of our argument is implicitly in [28, Corollaire 10.c]. Suppose that there exists
𝑓 ∈ 𝛤0(H) such that𝑇 = prox𝑓 . Then, on account of [28, Corollaire 10.c] and [3, Proposition 22.14],𝑇
is nonexpansive and cyclically monotone. Conversely, suppose that 𝑇 is nonexpansive and cyclically
monotone. Then 𝑇 is monotone and it thus follows from [3, Corollary 20.28] that 𝑇 is maximally
monotone. Therefore, Rockafellar’s cyclic monotonicity theorem [3, Theorem 22.18] guarantees the
existence of a function 𝜑 ∈ 𝛤0(H) such that 𝑇 = 𝜕𝜑 . We conclude by invoking [28, Corollaire 10.c].

(ii): See [38, Theorem 1.1].
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Remark 4.2. In connection with Lemma 4.1(i), a characterization of proximity operators based on
firm nonexpansiveness and an alternative cyclic inequality is provided in [2, Theorem 6.6].

In [27, 28], Moreau showed that the convex combination of finitelymany proximity operators acting
on the same Hilbert space is a proximity operator. Here is a generalization of this result.

Theorem 4.3. Suppose that Assumption 1.2 is in force. Let G be a separable real Hilbert space and, for
every 𝜔 ∈ 𝛺 , let f𝜔 ∈ 𝛤0(H𝜔 ) and let L𝜔 : G → H𝜔 be linear and bounded. Suppose that the following
are satisfied:

[A] For every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ proxf𝜔 (𝑥 (𝜔)) lies in𝔊.
[B] There exists 𝑧 ∈ ℌ such that the mapping 𝜔 ↦→ proxf𝜔 (𝑧 (𝜔)) lies in ℌ.
[C] For every z ∈ G, the mapping 𝔢Lz : 𝜔 ↦→ L𝜔z lies in𝔊.
[D]
∫

𝛺 ∥L𝜔 ∥2𝜇 (𝑑𝜔) ⩽ 1.

Then (
∃ g ∈ 𝛤0(G)

)
(∀z ∈ G) proxg z =

∫

𝛺

L∗𝜔
(
proxf𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔). (4.3)

Proof. Set𝑇 =
𝔊∫ ⊕

𝛺 proxf𝜔 𝜇 (𝑑𝜔). Then, on account of Proposition 3.4(i),𝑇 : H → H is nonexpansive.
Next, items (ii) and (v) of Proposition 3.12 ensure that the operator𝐿 : G → H : z ↦→ 𝔢Lz is well defined,
linear, and bounded, with ∥𝐿∥ ⩽ 1, and its adjoint is given by

𝐿∗ : H → G : 𝑥∗ ↦→
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔) . (4.4)

Hence, 𝐿∗ ◦𝑇 ◦ 𝐿 : G → G is nonexpansive and

(∀z ∈ G) 𝐿∗
(
𝑇 (𝐿z)

)
=

∫

𝛺

L∗𝜔
(
proxf𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔). (4.5)

Therefore, in the light of Lemma 4.1(i), it remains to show that 𝐿∗ ◦ 𝑇 ◦ 𝐿 is cyclically monotone.
Towards this end, let 2 ⩽ 𝑛 ∈ N and let (z1, . . . , z𝑛+1) ∈ G𝑛+1 be such that z𝑛+1 = z1. Then, appealing
to the cyclic monotonicity of the operators (proxf𝜔 )𝜔∈𝛺 ,

(∀𝜔 ∈ 𝛺)
𝑛∑︁

𝑘=1

〈
L𝜔z𝑘+1 − L𝜔z𝑘

�� proxf𝜔 (L𝜔z𝑘 )〉H𝜔
⩽ 0. (4.6)

Thus, it follows from (1.7) that
𝑛∑︁

𝑘=1

〈
z𝑘+1 − z𝑘

��𝐿∗ (𝑇 (𝐿z𝑘 ))〉G =

𝑛∑︁
𝑘=1

⟨𝐿z𝑘+1 − 𝐿z𝑘 |𝑇 (𝐿z𝑘 )⟩H

=

𝑛∑︁
𝑘=1

∫

𝛺

〈
L𝜔z𝑘+1 − L𝜔z𝑘

�� proxf𝜔 (L𝜔z𝑘 )〉H𝜔
𝜇 (𝑑𝜔)

=

∫

𝛺

𝑛∑︁
𝑘=1

〈
L𝜔z𝑘+1 − L𝜔z𝑘

�� proxf𝜔 (L𝜔z𝑘 )〉H𝜔
𝜇 (𝑑𝜔)

⩽ 0, (4.7)

which concludes the proof.
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Remark 4.4. Identifying the function g in (4.3) is a natural question, which led to the introduction
of the notion of integral proximal mixtures in [12].

Proposition 4.5. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let A𝜔 : H𝜔 → 2H𝜔 be
maximally monotone. Set

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔). (4.8)

Then the following hold:

(i) Suppose that there exists 𝑓 ∈ 𝛤0(H) such that 𝐴 = 𝜕𝑓 . Then, for 𝜇-almost every 𝜔 ∈ 𝛺 , there
exists f𝜔 ∈ 𝛤0(H𝜔 ) such that A𝜔 = 𝜕f𝜔 .

(ii) Suppose that there exists a nonempty closed convex subset 𝐶 of H such that 𝐴 = 𝑁𝐶 . Then, for
𝜇-almost every 𝜔 ∈ 𝛺 , there exists a closed convex subset C𝜔 of H𝜔 such that A𝜔 = 𝑁C𝜔

.

Proof. Lemma 2.2(v) asserts that there exists a sequence (𝑢𝑛)𝑛∈N in ℌ such that

(∀𝜔 ∈ 𝛺)
{
𝑢𝑛 (𝜔)

}
𝑛∈N = H𝜔 . (4.9)

(i): Set I =
{
(𝑖𝑘 )1⩽𝑘⩽𝑛+1 ∈ N𝑛+1 | 2 ⩽ 𝑛 ∈ N and 𝑖𝑛+1 = 𝑖1

}
, fix temporarily i = (𝑖𝑘 )1⩽𝑘⩽𝑛+1 ∈ I,

and let 𝛩 ∈ F be such that 𝜇 (𝛩 ) < +∞. Then, by Lemma 2.2(iii), {1𝛩𝑢𝑖𝑘 }1⩽𝑘⩽𝑛 ⊂ ℌ. In turn, since
𝐽𝐴 : H → H , it follows from Proposition 3.5 and Lemma 2.2(ii) that, for every 𝑘 ∈ {1, . . . , 𝑛}, a
representative in ℌ of 𝐽𝐴 (1𝛩𝑢𝑖𝑘 ) is the mapping

𝜔 ↦→
{
𝐽A𝜔

(
𝑢𝑖𝑘 (𝜔)

)
, if 𝜔 ∈ 𝛩 ;

𝐽A𝜔
0, if 𝜔 ∈ ∁𝛩.

(4.10)

At the same time, for every 𝑘 ∈ {1, . . . , 𝑛}, a representative in ℌ of 1𝛩𝑢𝑖𝑘 is the mapping

𝜔 ↦→
{
𝑢𝑖𝑘 (𝜔), if 𝜔 ∈ 𝛩 ;
0, if 𝜔 ∈ ∁𝛩.

(4.11)

Hence, since 𝐽𝐴 = prox𝑓 is cyclically monotone by virtue of [3, Example 23.3] and Lemma 4.1, we
derive from (1.7) that

∫

𝛩

𝑛∑︁
𝑘=1

〈
𝑢𝑖𝑘+1 (𝜔) − 𝑢𝑖𝑘 (𝜔)

�� 𝐽A𝜔

(
𝑢𝑖𝑘 (𝜔)

)〉
H𝜔

𝜇 (𝑑𝜔) =
𝑛∑︁

𝑘=1

⟨1𝛩𝑢𝑖𝑘+1 − 1𝛩𝑢𝑖𝑘 | 𝐽𝐴 (1𝛩𝑢𝑖𝑘 )⟩H ⩽ 0. (4.12)

Therefore, thanks to the fact that (𝛺,F, 𝜇) is 𝜎-finite, there exists 𝛯i ∈ F such that

𝜇 (𝛯i) = 0 and
(
∀𝜔 ∈ ∁𝛯i

) 𝑛∑︁
𝑘=1

〈
𝑢𝑖𝑘+1 (𝜔) − 𝑢𝑖𝑘 (𝜔)

�� 𝐽A𝜔

(
𝑢𝑖𝑘 (𝜔)

)〉
H𝜔
⩽ 0. (4.13)

Now set 𝛯 =
⋃

i∈I𝛯i. Since I is countable, 𝛯 ∈ F and 𝜇 (𝛯) = 0. Additionally, (4.13) implies that

(
∀i = (𝑖𝑘 )1⩽𝑘⩽𝑛+1 ∈ I

) (
∀𝜔 ∈ ∁𝛯

) 𝑛∑︁
𝑘=1

〈
𝑢𝑖𝑘+1 (𝜔) − 𝑢𝑖𝑘 (𝜔)

�� 𝐽A𝜔

(
𝑢𝑖𝑘 (𝜔)

)〉
H𝜔
⩽ 0. (4.14)
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To proceed further, take 𝜔 ∈ ∁𝛯 , let 2 ⩽ 𝑛 ∈ N, and let (x1, . . . , x𝑛+1) be a family in H𝜔 such that
x𝑛+1 = x1. For every 𝑘 ∈ {1, . . . , 𝑛}, we infer from (4.9) that there exists a sequence (𝑖𝑘,𝑚)𝑚∈N in N
such that𝑢𝑖𝑘,𝑚 (𝜔) → x𝑘 . Set (∀𝑚 ∈ N) 𝑖𝑛+1,𝑚 = 𝑖1,𝑚 . Then, for every𝑚 ∈ N, because (𝑖𝑘,𝑚)1⩽𝑘⩽𝑛+1 ∈ I,
it results from (4.14) that

𝑛∑︁
𝑘=1

〈
𝑢𝑖𝑘+1,𝑚 (𝜔) − 𝑢𝑖𝑘,𝑚 (𝜔)

�� 𝐽A𝜔

(
𝑢𝑖𝑘,𝑚 (𝜔)

)〉
H𝜔
⩽ 0. (4.15)

Therefore, the continuity of 𝐽A𝜔
forces

∑𝑛
𝑘=1⟨x𝑘+1 − x𝑘 | 𝐽A𝜔

x𝑘⟩ ⩽ 0. Consequently, since 𝐽A𝜔
is non-

expansive, we conclude via Lemma 4.1(i) that there exists f𝜔 ∈ 𝛤0(H𝜔 ) such that 𝐽A𝜔
= proxf𝜔 .

(ii): Argue as in (i).

Let us collect the main properties of Hilbert direct integral functions under the umbrella of the
following assumption.

Assumption 4.6. Assumption 1.2 and the following are in force:

[A] For every 𝜔 ∈ 𝛺 , f𝜔 ∈ 𝛤0(H𝜔 ).
[B] For every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ proxf𝜔 (𝑥 (𝜔)) lies in𝔊.
[C] There exists 𝑟 ∈ ℌ such that the function 𝜔 ↦→ f𝜔 (𝑟 (𝜔)) lies in L 1(𝛺,F, 𝜇;R).
[D] There exist 𝑠∗ ∈ ℌ and 𝜗 ∈ L 1(𝛺,F, 𝜇;R) such that

(∀𝜇𝜔 ∈ 𝛺) f𝜔 ⩾ ⟨ · | 𝑠∗(𝜔)⟩H𝜔
+ 𝜗 (𝜔). (4.16)

The following theorem presents the main properties of Hilbert direct integrals of convex functions.
In the literature, such properties are available only in the setting of Examples 2.1(i) and 2.1(iv); see [3,
11, 14, 35], where different techniques are employed which are not applicable in our general context.

Theorem 4.7. Suppose that Assumption 4.6 is in force and define

𝑓 =
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔) . (4.17)

Then the following hold:

(i) 𝑓 is well defined.
(ii) 𝑓 ∈ 𝛤0(H).

(iii) 𝜕𝑓 =
𝔊∫ ⊕

𝛺

𝜕f𝜔𝜇 (𝑑𝜔).

(iv) Let 𝛾 ∈ ]0, +∞[ and 𝑥 ∈ ℌ. Then the mapping 𝜔 ↦→ prox𝛾 f𝜔 (𝑥 (𝜔)) lies in ℌ and prox𝛾 𝑓 𝑥 =
𝔊∫ ⊕

𝛺

prox𝛾 f𝜔
(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔).

(v) dom 𝑓 =
𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔).

(vi) Argmin 𝑓 =
𝔊∫ ⊕

𝛺

Argmin f𝜔 𝜇 (𝑑𝜔).

(vii) Let 𝛽 ∈ [0, +∞[ and suppose that, for every 𝜔 ∈ 𝛺 , dom f𝜔 = H𝜔 and f𝜔 is Gâteaux differentiable
on H𝜔 . Then the following are equivalent:
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(a) For 𝜇-almost every 𝜔 ∈ 𝛺 , ∇f𝜔 is 𝛽-Lipschitzian.
(b) dom 𝑓 = H , 𝑓 is Fréchet differentiable, and ∇𝑓 is 𝛽-Lipschitzian.

(viii) Let 𝛾 ∈ ]0, +∞[. Then 𝛾 𝑓 =
𝔊∫ ⊕

𝛺

𝛾f𝜔𝜇 (𝑑𝜔).

(ix) 𝑓 ∗ =
𝔊∫ ⊕

𝛺

f∗𝜔𝜇 (𝑑𝜔).

(x) rec 𝑓 =
𝔊∫ ⊕

𝛺

rec f𝜔 𝜇 (𝑑𝜔).

Proof. According to (4.16), there exists 𝛯 ∈ F such that

𝜇 (𝛯) = 0 (4.18)

and

(∀𝑥 ∈𝔊)
(
∀𝜔 ∈ ∁𝛯

)
f𝜔
(
𝑥 (𝜔)

)
⩾ ⟨𝑥 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

+ 𝜗 (𝜔). (4.19)

Let us define

𝑝 : 𝜔 ↦→ proxf𝜔
(
𝑟 (𝜔) + 𝑠∗(𝜔)

)
. (4.20)

Since 𝑟 + 𝑠∗ ∈ ℌ, Assumption 4.6[B] ensures that 𝑝 ∈ 𝔊. In addition, we deduce from [3, Proposi-
tion 16.44] that

(∀𝜔 ∈ 𝛺) 𝑟 (𝜔) + 𝑠∗(𝜔) − 𝑝 (𝜔) ∈ 𝜕f𝜔
(
𝑝 (𝜔)

)
(4.21)

and, in turn, from (2.2) and (4.19) that(
∀𝜔 ∈ ∁𝛯

)
f𝜔
(
𝑟 (𝜔)

)
− ⟨𝑟 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

⩾ f𝜔
(
𝑝 (𝜔)

)
+
〈
𝑟 (𝜔) − 𝑝 (𝜔)

�� 𝑟 (𝜔) + 𝑠∗(𝜔) − 𝑝 (𝜔)
〉
H𝜔

− ⟨𝑟 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

= f𝜔
(
𝑝 (𝜔)

)
− ⟨𝑝 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

+ ∥𝑟 (𝜔) − 𝑝 (𝜔)∥2H𝜔

⩾ 𝜗 (𝜔) + ∥𝑟 (𝜔) − 𝑝 (𝜔)∥2H𝜔
. (4.22)

On the other hand, thanks to items [C] and [D] in Assumption 4.6, the function 𝜔 ↦→ f𝜔 (𝑟 (𝜔)) −
⟨𝑟 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

− 𝜗 (𝜔) lies in L 1(𝛺,F, 𝜇;R). Therefore, it results from (4.22) that 𝑟 − 𝑝 ∈ ℌ and,
since 𝑟 ∈ ℌ by Assumption 4.6[C], we get

𝑝 ∈ ℌ. (4.23)

Now set

𝐴 =
𝔊∫ ⊕

𝛺

𝜕f𝜔𝜇 (𝑑𝜔) . (4.24)

Assumption 4.6[A] and [28, Proposition 12.b] imply that the operators (𝜕f𝜔 )𝜔∈𝛺 are maximally mono-
tone. Moreover, since 𝑟 + 𝑠∗ ∈ ℌ, we infer from (4.21) and (4.23) that 𝑝 ∈ dom𝐴. Moreover, Assump-
tion 4.6[B] and [3, Example 23.3] guarantee that, for every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ 𝐽𝜕f𝜔 (𝑥 (𝜔)) lies
in𝔊. Altogether,

the family (𝜕f𝜔 )𝜔∈𝛺 satisfies the assumption of Theorem 3.8. (4.25)
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Hence, it follows from Theorem 3.8(i) that

𝐴 is maximally monotone (4.26)

and from Theorem 3.8(ii)(a) and [3, Example 23.3] that(
∀𝛾 ∈ ]0, +∞[

)
(∀𝑥 ∈ ℌ) the mapping 𝜔 ↦→ prox𝛾 f𝜔

(
𝑥 (𝜔)

)
lies in ℌ. (4.27)

(i): We must show that, for every 𝑥 ∈ ℌ, the function 𝛺 → ]−∞, +∞] : 𝜔 ↦→ f𝜔 (𝑥 (𝜔)) is F-
measurable. To do so, we employ a Moreau envelope approximation technique inspired by [1]. Take
𝑥 ∈ ℌ. For every 𝛾 ∈ ]0, +∞[, let𝛹𝛾 be the mapping defined on [0, 1] ×𝛺 by(

∀(𝑡, 𝜔) ∈ [0, 1] ×𝛺
)

𝛹𝛾 (𝑡, 𝜔) = 𝑟 (𝜔) + 𝑡
(
𝑥 (𝜔) − 𝑟 (𝜔)

)
−prox𝛾 f𝜔

(
𝑟 (𝜔) + 𝑡

(
𝑥 (𝜔) − 𝑟 (𝜔)

) )
(4.28)

and define

𝜙𝛾 : [0, 1] ×𝛺 → R : (𝑡, 𝜔) ↦→
〈
𝑥 (𝜔) − 𝑟 (𝜔)

��𝛹𝛾 (𝑡, 𝜔)
〉
H𝜔

. (4.29)

Then, for every 𝛾 ∈ ]0, +∞[, the continuity of the mappings (𝛹𝛾 ( · , 𝜔))𝜔∈𝛺 ensures that the functions
(𝜙𝛾 ( · , 𝜔))𝜔∈𝛺 are continuous, while (4.27) and Lemma 2.2(i) ensure that the functions (𝜙𝛾 (𝑡, · ))𝑡∈[0,1]
are F-measurable. Hence, the functions (𝜙𝛾 )𝛾∈]0,+∞[ are B[0,1] ⊗ F-measurable [14, Lemma III.14]. In
turn, invoking the fact that (𝛺,F, 𝜇) is 𝜎-finite, we deduce that, for every 𝛾 ∈ ]0, +∞[, the function
𝛺 → R : 𝜔 ↦→

∫ 1
0 𝜙𝛾 (𝑡, 𝜔)𝑑𝑡 is F-measurable. Therefore, for every 𝛾 ∈ ]0, +∞[, since [3, Proposi-

tion 12.30] implies that

(∀𝜔 ∈ 𝛺) 𝛾f𝜔
(
𝑥 (𝜔)

)
−𝛾f𝜔

(
𝑟 (𝜔)

)
= 𝛾−1
∫ 1

0

〈
𝑥 (𝜔) − 𝑟 (𝜔)

��𝛹𝛾 (𝑡, 𝜔)
〉
H𝜔

𝑑𝑡 = 𝛾−1
∫ 1

0
𝜙𝛾 (𝑡, 𝜔)𝑑𝑡, (4.30)

we infer that the function𝛺 → R : 𝜔 ↦→ 𝛾f𝜔 (𝑥 (𝜔)) − 𝛾f𝜔 (𝑟 (𝜔)) is F-measurable. However, [3, Propo-
sition 12.33(ii)] and Assumption 4.6[C] give

(∀𝜔 ∈ 𝛺) f𝜔
(
𝑥 (𝜔)

)
− f𝜔

(
𝑟 (𝜔)

)
= lim

𝛾↓0

(
𝛾f𝜔

(
𝑥 (𝜔)

)
− 𝛾f𝜔

(
𝑟 (𝜔)

) )
. (4.31)

Hence, the function 𝛺 → ]−∞, +∞] : 𝜔 ↦→ f𝜔 (𝑥 (𝜔)) − f𝜔 (𝑟 (𝜔)) is F-measurable. Consequently, in-
voking Assumption 4.6[C] once more, we conclude that the function𝛺 → ]−∞, +∞] : 𝜔 ↦→ f𝜔 (𝑥 (𝜔))
is F-measurable.

(ii): By (4.19), (4.18), and Assumption 4.6[D],

(∀𝑥 ∈ H) 𝑓 (𝑥) =
∫

𝛺

f𝜔
(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔) ⩾
∫

𝛺

⟨𝑥 (𝜔) | 𝑠∗(𝜔)⟩H𝜔
𝜇 (𝑑𝜔) +
∫

𝛺

𝜗 (𝜔)𝜇 (𝑑𝜔) > −∞, (4.32)

which yields

−∞ ∉ 𝑓 (H). (4.33)

At the same time, since the functions (f𝜔 )𝜔∈𝛺 are convex by Assumption 4.6[A], so is 𝑓 . Moreover,
Assumption 4.6[C] implies that dom 𝑓 ≠ ∅. Therefore, it remains to show that 𝑓 is lower semicontin-
uous. Take 𝜉 ∈ R, let (𝑥𝑛)𝑛∈N be a sequence inH , let 𝑥 ∈ H , and suppose that

sup
𝑛∈N

𝑓 (𝑥𝑛) ⩽ 𝜉 and 𝑥𝑛 → 𝑥 . (4.34)
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Then Lemma 2.3 asserts that there exists a strictly increasing sequence (𝑘𝑛)𝑛∈N inN such that (∀𝜇𝜔 ∈
𝛺) 𝑥𝑘𝑛 (𝜔) → 𝑥 (𝜔). Let us define

(∀𝑛 ∈ N) 𝜚𝑛 : 𝛺 → ]−∞, +∞] : 𝜔 ↦→ f𝜔
(
𝑥𝑘𝑛 (𝜔)

)
− ⟨𝑥𝑘𝑛 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

. (4.35)

By (i) and Lemma 2.2(i), the functions (𝜚𝑛)𝑛∈N are F-measurable. Additionally,

(∀𝑛 ∈ N) 𝜚𝑛 ⩾ 𝜗 𝜇-a.e. and
∫

𝛺

𝜚𝑛 (𝜔)𝜇 (𝑑𝜔) = 𝑓 (𝑥𝑘𝑛 ) − ⟨𝑥𝑘𝑛 | 𝑠∗⟩H , (4.36)

and, since the functions (f𝜔 )𝜔∈𝛺 are lower semicontinuous, (∀𝜇𝜔 ∈ 𝛺) f𝜔 (𝑥 (𝜔))−⟨𝑥 (𝜔) | 𝑠∗(𝜔)⟩H𝜔
⩽

lim 𝜚𝑛 (𝜔). Thus, we derive from Fatou’s lemma and (4.34) that

𝑓 (𝑥) − ⟨𝑥 | 𝑠∗⟩H =

∫

𝛺

(
f𝜔
(
𝑥 (𝜔)

)
− ⟨𝑥 (𝜔) | 𝑠∗(𝜔)⟩H𝜔

)
𝜇 (𝑑𝜔)

⩽

∫

𝛺

lim 𝜚𝑛 (𝜔) 𝜇 (𝑑𝜔)

⩽ lim
∫

𝛺

𝜚𝑛 (𝜔)𝜇 (𝑑𝜔)

= lim
(
𝑓 (𝑥𝑘𝑛 ) − ⟨𝑥𝑘𝑛 | 𝑠∗⟩H

)
⩽ 𝜉 − ⟨𝑥 | 𝑠∗⟩H . (4.37)

Hence 𝑓 (𝑥) ⩽ 𝜉 and we conclude via [3, Lemma 1.24] that 𝑓 is lower semicontinuous.
(iii): Let (𝑥, 𝑥∗) ∈ gra𝐴 and let 𝛩 ∈ F be such that 𝜇 (𝛩 ) = 0 and (∀𝜔 ∈ ∁𝛩 ) 𝑥∗(𝜔) ∈ 𝜕f𝜔 (𝑥 (𝜔)).

For every 𝑦 ∈ H , thanks to the inequality(
∀𝜔 ∈ ∁𝛩

) 〈
𝑦 (𝜔) − 𝑥 (𝜔)

��𝑥∗(𝜔)〉H𝜔
+ f𝜔

(
𝑥 (𝜔)

)
⩽ f𝜔

(
𝑦 (𝜔)

)
, (4.38)

we obtain ⟨𝑦 − 𝑥 | 𝑥∗⟩H + 𝑓 (𝑥) ⩽ 𝑓 (𝑦). Hence, (𝑥, 𝑥∗) ∈ gra 𝜕𝑓 and we thus have gra𝐴 ⊂ gra 𝜕𝑓 .
Consequently, the monotonicity of 𝜕𝑓 and (4.26) force 𝜕𝑓 = 𝐴.

(iv): Combine (ii), [3, Example 23.3], (iii), (4.25), and Theorem 3.8(ii)(a).
(v): We derive from (ii), [3, Proposition 16.38], (iii), (4.25), and Theorem 3.8(iii) that

dom 𝑓 = dom 𝜕𝑓 =
𝔊∫ ⊕

𝛺

dom 𝜕f𝜔 𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔) . (4.39)

This shows that 𝔊∫ ⊕
𝛺 dom f𝜔 𝜇 (𝑑𝜔) is a closed subset of H . On the other hand, for every 𝑥 ∈ dom 𝑓 ,

it results from Definition 1.4 that, for 𝜇-almost every 𝜔 ∈ 𝛺 , 𝑥 (𝜔) ∈ dom f𝜔 and, therefore, that
𝑥 ∈ 𝔊∫ ⊕

𝛺 dom f𝜔 𝜇 (𝑑𝜔). Consequently,

dom 𝑓 ⊂
𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔) ⊂
𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔) = dom 𝑓 , (4.40)

which yields the desired identities.
(vi): This follows from Fermat’s rule, (iii), and Proposition 3.2(iii).
(vii): Appealing to (4.25), we deduce from Theorem 3.8(v)(a) and [3, Proposition 17.31(i)] that, for

every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ 0(𝜕f𝜔 ) (𝑥 (𝜔)) = ∇f𝜔 (𝑥 (𝜔)) lies in𝔊. In addition, by (iii),

𝜕𝑓 =
𝔊∫ ⊕

𝛺

∇f𝜔 𝜇 (𝑑𝜔). (4.41)
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Furthermore, for every 𝜔 ∈ 𝛺 , [3, Corollary 17.40] asserts that ∇f𝜔 : H𝜔 → H𝜔 is strong-to-weak
continuous. Consequently, in the light of [3, Proposition 17.41], the assertion follows from Proposi-
tion 3.4(i) applied to the operators (∇f𝜔 )𝜔∈𝛺 .

(viii): Take 𝑥 ∈ ℌ and define 𝑞 : 𝜔 ↦→ prox𝛾 f𝜔 (𝑥 (𝜔)). Then (iv) asserts that 𝑞 ∈ ℌ and 𝑞 = prox𝛾 𝑓 𝑥 .
Hence, we derive from (ii), [3, Remark 12.24], and Definition 1.4 that

𝛾 𝑓 (𝑥) = 𝑓
(
prox𝛾 𝑓 𝑥

)
+ (2𝛾)−1∥𝑥 − prox𝛾 𝑓 𝑥 ∥2H

=

∫

𝛺

(
f𝜔
(
𝑞(𝜔)

)
+ (2𝛾)−1∥𝑥 (𝜔) − 𝑞(𝜔)∥2H𝜔

)
𝜇 (𝑑𝜔)

=

∫

𝛺

𝛾f𝜔
(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔), (4.42)

as claimed.
(ix): Let 𝑥∗ ∈ ℌ, let (𝛾𝑛)𝑛∈N be a sequence in ]0, 1[ such that 𝛾𝑛 ↓ 0, and define

(∀𝑛 ∈ N) 𝜗𝑛 : 𝛺 → R : 𝜔 ↦→ 𝛾𝑛
(
f∗𝜔
) (
𝑥∗(𝜔)

)
. (4.43)

For every 𝑛 ∈ N, since Moreau’s decomposition theorem [3, Theorem 14.3(i)] gives

(∀𝜔 ∈ 𝛺) 𝜗𝑛 (𝜔) = 𝛾−1𝑛 ∥𝑥∗(𝜔)∥2H𝜔
− 𝛾−1𝑛 f𝜔

(
𝛾−1𝑛 𝑥∗(𝜔)

)
, (4.44)

it follows from (viii) that 𝜗𝑛 ∈ L 1(𝛺,F, 𝜇;R). Further, we deduce from [3, Proposition 12.33(ii)] that

(∀𝜔 ∈ 𝛺)
(
𝜗𝑛 (𝜔)

)
𝑛∈N is increasing and 𝜗𝑛 (𝜔) ↑ f∗𝜔

(
𝑥∗(𝜔)

)
(4.45)

and, therefore, that the function𝛺 → ]−∞, +∞] : 𝜔 ↦→ f∗𝜔 (𝑥∗(𝜔)) isF-measurable. On the other hand,
invoking (4.44), (viii), Moreau’s decomposition theorem, and [3, Proposition 12.33(ii)], we obtain
∫

𝛺

𝜗𝑛 (𝜔)𝜇 (𝑑𝜔) =
∫

𝛺

(
𝛾−1𝑛 ∥𝑥∗(𝜔)∥2H𝜔

− 𝛾−1𝑛 f𝜔
(
𝛾−1𝑛 𝑥∗(𝜔)

) )
𝜇 (𝑑𝜔)

= 𝛾−1𝑛 ∥𝑥∗∥2H − 𝛾−1𝑛 𝑓
(
𝛾−1𝑛 𝑥∗

)
=

𝛾𝑛(𝑓 ∗) (𝑥∗)
→ 𝑓 ∗(𝑥∗) as 𝑛 → +∞. (4.46)

Thus, in view of (4.45), we infer from the Beppo Levi monotone convergence theorem [5, Theo-
rem 2.8.2 and Corollary 2.8.6] that

𝑓 ∗(𝑥∗) = lim
∫

𝛺

𝜗𝑛 (𝜔)𝜇 (𝑑𝜔) =
∫

𝛺

lim𝜗𝑛 (𝜔) 𝜇 (𝑑𝜔) =
∫

𝛺

f∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔) . (4.47)

(x): Assumption 4.6[C] ensures that (∀𝜔 ∈ 𝛺) 𝑟 (𝜔) ∈ dom f𝜔 . Now take 𝑥 ∈ H and set(
∀𝛼 ∈ ]0, +∞[

)
𝜃𝛼 : 𝛺 → ]−∞, +∞] : 𝜔 ↦→

f𝜔
(
𝑟 (𝜔) + 𝛼𝑥 (𝜔)

)
− f𝜔

(
𝑟 (𝜔)

)
𝛼

. (4.48)

Then, for every 𝛼 ∈ ]0, +∞[, since 𝑟 + 𝛼𝑥 ∈ ℌ and 𝑟 ∈ ℌ, it results from (i) that 𝜃𝛼 is F-measurable.
On the other hand, by Assumption 4.6[A] and [3, Propositions 9.27 and 9.30(ii)], we obtain

(∀𝜔 ∈ 𝛺) the net
(
𝜃𝛼 (𝜔)

)
𝛼∈]0,+∞[ is increasing and (rec f𝜔 )

(
𝑥 (𝜔)

)
= lim

𝛼↑+∞
𝜃𝛼 (𝜔) . (4.49)
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Altogether, we infer from the Beppo Levi monotone convergence theorem, Assumption 4.6[C], (ii),
and [3, Proposition 9.30(ii)] that
∫

𝛺

(rec f𝜔 )
(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔) =
∫

𝛺

lim
𝛼↑+∞

𝜃𝛼 (𝜔) 𝜇 (𝑑𝜔)

= lim
𝛼↑+∞

∫

𝛺

𝜃𝛼 (𝜔)𝜇 (𝑑𝜔)

= lim
𝛼↑+∞

1
𝛼

(
∫

𝛺

f𝜔
(
𝑟 (𝜔) + 𝛼𝑥 (𝜔)

)
𝜇 (𝑑𝜔) −
∫

𝛺

f𝜔
(
𝑟 (𝜔)

)
𝜇 (𝑑𝜔)

)
= lim

𝛼↑+∞

𝑓 (𝑟 + 𝛼𝑥) − 𝑓 (𝑟 )
𝛼

= (rec 𝑓 ) (𝑥), (4.50)

which completes the proof.

Remark 4.8. Consider Theorem 4.7 in the special case of Example 2.1(iv). Then (ii), (iii), (iv), (ix), and
(x) were obtained, respectively, in [34, Corollary, p. 227], [34, Equation (25)], [3, Proposition 24.13],
[34, Theorem 2], and [4, Proposition II.1]. On the other hand, in the special case of Example 2.1(iii),
(iv) was obtained in [18, Corollary 2.2].

Example 4.9. Consider the setting of Example 2.1(iii) and suppose, in addition, that (∀𝑘 ∈ N) 𝛼𝑘 = 1
and H𝑘 = R. Then H = ℓ2(N). Now set (∀𝑘 ∈ N) f𝑘 = | · |. Then

dom
(
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔)
)
= ℓ1(N) ≠ ℓ2(N) =

𝔊∫ ⊕

𝛺

dom f𝜔 𝜇 (𝑑𝜔) . (4.51)

Thus, the closure operation in Theorem 4.7(v) must not be omitted.

Every maximally monotone operator on R is the subdifferential of a function in 𝛤0(R) [3, Corol-
lary 22.23]. The following result is an extension of this fact.

Corollary 4.10. Let (𝛺,F, 𝜇) be a complete 𝜎-finite measure space and, for every 𝜔 ∈ 𝛺 , let A𝜔 : R→
2R be maximally monotone. SetH = 𝐿2(𝛺,F, 𝜇;R) and

𝐴 : H → 2H : 𝑥 ↦→
{
𝑥∗ ∈ H | (∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔

(
𝑥 (𝜔)

)}
. (4.52)

Then the following are equivalent:

(i) 𝐴 is maximally monotone.
(ii) There exists 𝑓 ∈ 𝛤0(H) such that 𝐴 = 𝜕𝑓 .
(iii) dom𝐴 ≠ ∅ and, for every x ∈ R, the function 𝛺 → R : 𝜔 ↦→ 𝐽A𝜔

x is F-measurable.

Proof. (ii)⇒(i): Use Moreau’s theorem [28, Proposition 12.b].
(i)⇒(iii): This is a special case of Corollary 3.10.
(iii)⇒(ii): Set 𝔊 =

{
𝑥 : 𝛺 → R | 𝑥 is F-measurable

}
. Then, as seen in Example 2.1(iv), H =

𝔊∫ ⊕
𝛺 R 𝜇 (𝑑𝜔). For every 𝜔 ∈ 𝛺 , [3, Corollary 22.23] asserts that there exists g𝜔 ∈ 𝛤0(R) such that
A𝜔 = 𝜕g𝜔 . Next, since dom𝐴 ≠ ∅ and (𝛺,F, 𝜇) is complete, there exist 𝑟 and 𝑠∗ in L 2(𝛺,F, 𝜇;R)
such that

(∀𝜇𝜔 ∈ 𝛺) 𝑠∗(𝜔) ∈ A𝜔

(
𝑟 (𝜔)

)
= 𝜕g𝜔

(
𝑟 (𝜔)

)
(4.53)
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and

(∀𝜔 ∈ 𝛺) 𝑟 (𝜔) ∈ domA𝜔 ⊂ dom g𝜔 . (4.54)

Now set

(∀𝜔 ∈ 𝛺) f𝜔 = g𝜔 − g𝜔
(
𝑟 (𝜔)

)
. (4.55)

Then the functions (f𝜔 )𝜔∈𝛺 lie in 𝛤0(R) and, by [3, Proposition 24.8(i) and Example 23.3], (∀𝜔 ∈ 𝛺)
proxf𝜔 = proxg𝜔 = 𝐽A𝜔

. In turn, appealing to the continuity of the operators (𝐽A𝜔
)𝜔∈𝛺 , we deduce

from [14, Lemma III.14] that the mapping 𝛺 × R → R : (𝜔, x) ↦→ proxf𝜔 x is F ⊗ BR-measurable.
Therefore, for every 𝑥 ∈ L 2(𝛺,F, 𝜇;R), the mapping𝛺 → R : 𝜔 ↦→ proxf𝜔 (𝑥 (𝜔)) lies in𝔊. Next, we
get from (4.55) and (4.54) that (∀𝜔 ∈ 𝛺) f𝜔 (𝑟 (𝜔)) = 0. Moreover, by (4.53),

(∀𝜇𝜔 ∈ 𝛺) (∀x ∈ R) f𝜔 (x) = g𝜔 (x) − g𝜔
(
𝑟 (𝜔)

)
⩾

(
x − 𝑟 (𝜔)

)
𝑠∗(𝜔) = x𝑠∗(𝜔) − 𝑟 (𝜔)𝑠∗(𝜔). (4.56)

Hence, since 𝜔 ↦→ 𝑟 (𝜔)𝑠∗(𝜔) lies in L 1(𝛺,F, 𝜇;R), the family (f𝜔 )𝜔∈𝛺 satisfies the assumption of
Theorem 4.7. Altogether, we conclude via Theorem 4.7(ii) that

𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔) ∈ 𝛤0(H) (4.57)

and via Theorem 4.7(iii) and (4.52) that

𝜕

(
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔)
)
=

𝔊∫ ⊕

𝛺

𝜕f𝜔𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔) = 𝐴, (4.58)

as desired.

Corollary 4.11. Let (A𝑘 )𝑘∈N be a family of maximally monotone operators from R to 2R, and define

𝐴 : ℓ2(N) → 2ℓ
2 (N) : (x𝑘 )𝑘∈N ↦→

{
(x∗

𝑘
)𝑘∈N ∈ ℓ2(N) | (∀𝑘 ∈ N) x∗

𝑘
∈ A𝑘x𝑘

}
. (4.59)

Suppose that dom𝐴 ≠ ∅. Then 𝐴 is maximally monotone and there exists 𝑓 ∈ 𝛤0(ℓ2(N)) such that
𝐴 = 𝜕𝑓 .

Proof. Apply Corollary 4.10 to the case where 𝛺 = N, F = 2N, and 𝜇 is the counting measure.

Corollary 4.12. Suppose that Assumption 1.2 is in force and, for every 𝜔 ∈ 𝛺 , let C𝜔 be a nonempty
closed convex subset of H𝜔 . Set

𝐶 =
𝔊∫ ⊕

𝛺

C𝜔𝜇 (𝑑𝜔) . (4.60)

Suppose that 𝐶 ≠ ∅ and that, for every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ projC𝜔
(𝑥 (𝜔)) lies in 𝔊. Then the

following hold:

(i) 𝐶 is a closed convex subset ofH .

(ii) 𝑁𝐶 =
𝔊∫ ⊕

𝛺

𝑁C𝜔
𝜇 (𝑑𝜔).

(iii) proj𝐶 =
𝔊∫ ⊕

𝛺

projC𝜔
𝜇 (𝑑𝜔).
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(iv) 𝑑2
𝐶
=

𝔊∫ ⊕

𝛺

𝑑2C𝜔
𝜇 (𝑑𝜔).

(v) 𝜎𝐶 =
𝔊∫ ⊕

𝛺

𝜎C𝜔
𝜇 (𝑑𝜔).

(vi) Suppose that, for every 𝜔 ∈ 𝛺 , C𝜔 is a cone in H𝜔 . Then 𝐶⊖ =
𝔊∫ ⊕

𝛺

C⊖
𝜔 𝜇 (𝑑𝜔).

(vii) Suppose that, for every 𝜔 ∈ 𝛺 , C𝜔 is a vector subspace of H𝜔 . Then 𝐶⊥ =
𝔊∫ ⊕

𝛺

C⊥
𝜔 𝜇 (𝑑𝜔).

Proof. Set (∀𝜔 ∈ 𝛺) f𝜔 = 𝜄C𝜔
. Then, for every 𝜔 ∈ 𝛺 , f𝜔 ∈ 𝛤0(H𝜔 ), f𝜔 ⩾ 0, and proxf𝜔 = projC𝜔

.
Moreover, since 𝐶 ≠ ∅ and (𝛺,F, 𝜇) is complete, there exists 𝑟 ∈ ℌ such that, for every 𝜔 ∈ 𝛺 ,
𝑟 (𝜔) ∈ C𝜔 or, equivalently, f𝜔 (𝑟 (𝜔)) = 0. Altogether, the family (f𝜔 )𝜔∈𝛺 satisfies the assumption of
Theorem 4.7. Therefore, in view of items (i) and (ii) in Theorem 4.7,

𝑓 =
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔) is well defined and lies in 𝛤0
(
H

)
. (4.61)

(i): Using Definitions 1.4 and 3.1, together with (4.60), we obtain

(∀𝑥 ∈ H) 𝑓 (𝑥) =
∫

𝛺

𝜄C𝜔

(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔)

=

{
0, if (∀𝜇𝜔 ∈ 𝛺) 𝑥 (𝜔) ∈ C𝜔 ;
+∞, otherwise

=

{
0, if 𝑥 ∈ 𝐶;
+∞, otherwise

= 𝜄𝐶 (𝑥), (4.62)

and the claim thus follows from (4.61).
(ii)–(v): In the light of (4.61) and (4.62), these follow from items (iii), (iv), (viii), and (ix) in Theo-

rem 4.7, respectively.
(vi): We deduce from [3, Example 6.40] and (ii) that

𝐶⊖ = 𝑁𝐶0 =
𝔊∫ ⊕

𝛺

(
𝑁C𝜔

0
)
𝜇 (𝑑𝜔) =

𝔊∫ ⊕

𝛺

C⊖
𝜔 𝜇 (𝑑𝜔) . (4.63)

(vii): Use (vi) and [3, Proposition 6.23].

Proposition 4.13. Suppose that Assumption 4.6 is in force. Let G be a separable real Hilbert space and,
for every 𝜔 ∈ 𝛺 , let L𝜔 : G → H𝜔 be linear and bounded. Suppose that, for every z ∈ G, the mapping
𝔢Lz : 𝜔 ↦→ L𝜔z lies in𝔊. Additionally, suppose that

∫

𝛺 ∥L𝜔 ∥2𝜇 (𝑑𝜔) < +∞ and that there exists w ∈ G
such that
∫

𝛺 f𝜔 (L𝜔w)𝜇 (𝑑𝜔) < +∞. Define

g : G → ]−∞, +∞] : z ↦→
∫

𝛺

f𝜔
(
L𝜔z

)
𝜇 (𝑑𝜔). (4.64)

Then the following hold:

(i) g is well defined and lies in 𝛤0(G).
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(ii) Let (z, z∗) ∈ G × G. Then z∗ ∈ 𝜕g(z) if and only if there exist sequences (𝛾𝑛)𝑛∈N in ]0, +∞[ and
(z𝑛)𝑛∈N in G such that

𝛾𝑛 ↓ 0, z𝑛 → z, and
∫

𝛺

L∗𝜔
(
prox𝛾−1𝑛 f∗𝜔

(
𝛾−1𝑛 L𝜔z𝑛

) )
𝜇 (𝑑𝜔) → z∗. (4.65)

Proof. Theorem 4.7(i)–(ii) state that

𝑓 =
𝔊∫ ⊕

𝛺

f𝜔𝜇 (𝑑𝜔) is well defined and lies in 𝛤0
(
H

)
. (4.66)

On the other hand, according to Proposition 3.12(ii),

𝐿 : G → H : z ↦→ 𝔢Lz is well defined, linear, and bounded. (4.67)

(i): Because 𝐿w ∈ dom 𝑓 , it follows from (4.64), (4.66), and (4.67) that

g = 𝑓 ◦ 𝐿 ∈ 𝛤0(G). (4.68)

(ii): It results fromTheorem 4.7(iii), Proposition 3.5, andMoreau’s decomposition [3, Theorem 14.3(ii)]
that (

∀𝛾 ∈ ]0, +∞[
)

𝛾(𝜕𝑓 ) =
𝔊∫ ⊕

𝛺

𝛾(𝜕f𝜔 )𝜇 (𝑑𝜔) =
𝔊∫ ⊕

𝛺

prox𝛾−1f𝜔 ◦𝛾−1IdH𝜔
𝜇 (𝑑𝜔) . (4.69)

Hence, for every 𝛾 ∈ ]0, +∞[ and every w ∈ G, since 𝔢Lw : 𝜔 ↦→ L𝜔w is a representative in ℌ of 𝐿w,
Proposition 3.12(v) implies that

𝐿∗
(
𝛾(𝜕𝑓 ) (𝐿w)

)
=

∫

𝛺

L∗𝜔
(
prox𝛾−1f∗𝜔

(
𝛾−1L𝜔w

) )
𝜇 (𝑑𝜔) . (4.70)

In addition, appealing to (4.66), (4.67), and (4.68), we derive from [32, Theorem 4.1] and a remark on
[32, p. 88] that gra 𝜕g is the set of points (w,w∗) ∈ G × G for which there exist sequences (𝛾𝑛)𝑛∈N in
]0, +∞[ and (w𝑛)𝑛∈N in G such that 𝛾𝑛 ↓ 0, w𝑛 → w, and 𝐿∗(𝛾𝑛(𝜕𝑓 ) (𝐿w𝑛)) → w∗

𝑛 . Altogether, the
proof is complete.

§5. Application to integral composite inclusion problems

Let G and (H𝑘 )1⩽𝑘⩽𝑝 be real Hilbert spaces. For every 𝑘 ∈ {1, . . . , 𝑝}, let A𝑘 : H𝑘 → 2H𝑘 be monotone
and let L𝑘 : G → H𝑘 be linear and bounded. Finite compositions of the form

∑𝑝

𝑘=1 L
∗
𝑘
◦A𝑘 ◦ L𝑘 arise in

many theoretical and modeling aspects of monotone operator theory [3, 8, 16, 21, 22]. The main object
of this section is to extend this construction to arbitrary families of monotone and linear operators.
More precisely, our focus is on the following monotonicity-preserving operation, which involves the
Aumann integral of (2.4).

Proposition 5.1. Suppose that Assumption 1.2 is in force. Let G be a separable real Hilbert space and,
for every 𝜔 ∈ 𝛺 , let A𝜔 : H𝜔 → 2H𝜔 be monotone and let L𝜔 : G → H𝜔 be linear and bounded. Then

M : G → 2G : z ↦→
∫

𝛺

L∗𝜔
(
A𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔) (5.1)

is monotone.
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Proof. Suppose that (z, z∗) and (w,w∗) are in graM. Then, by (2.4), there exist 𝑥∗ and 𝑦∗ in
∏

𝜔∈𝛺 H𝜔

such that
(∀𝜇𝜔 ∈ 𝛺) 𝑥∗(𝜔) ∈ A𝜔 (L𝜔z) and 𝑦∗(𝜔) ∈ A𝜔 (L𝜔w)
the mappings 𝜔 ↦→ L∗𝜔 (𝑥∗(𝜔)) and 𝜔 ↦→ L∗𝜔 (𝑦∗(𝜔)) lie in L 1(𝛺,F, 𝜇;G)
∫

𝛺 L∗𝜔 (𝑥∗(𝜔))𝜇 (𝑑𝜔) = z∗ and
∫

𝛺 L∗𝜔 (𝑦∗(𝜔))𝜇 (𝑑𝜔) = w∗.

(5.2)

The monotonicity of the operators (A𝜔 )𝜔∈𝛺 ensures that

(∀𝜇𝜔 ∈ 𝛺)
〈
z − w

�� L∗𝜔 (𝑥∗(𝜔)) − L∗𝜔
(
𝑦∗(𝜔)

)〉
G = ⟨L𝜔z − L𝜔w | 𝑥∗(𝜔) − 𝑦∗(𝜔)⟩H𝜔

⩾ 0. (5.3)

Therefore, using [36, Théorème 5.8.16], we obtain

⟨z − w | z∗ − w∗⟩G =

〈
z − w

���� ∫
𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔) −
∫

𝛺

L∗𝜔
(
𝑦∗(𝜔)

)
𝜇 (𝑑𝜔)

〉
G

=

∫

𝛺

〈
z − w

�� L∗𝜔 (𝑥∗(𝜔)) − L∗𝜔
(
𝑦∗(𝜔)

)〉
G 𝜇 (𝑑𝜔)

⩾ 0, (5.4)

which yields the assertion.

The inclusion problem under investigation involves the integral composite operator (5.1) and is
placed in the following environment.

Assumption 5.2. Assumption 1.2 and the following are in force:

[A] G is a separable real Hilbert space.
[B] For every 𝜔 ∈ 𝛺 , L𝜔 : G → H𝜔 is linear and bounded.
[C] For every z ∈ G, the mapping 𝔢Lz : 𝜔 ↦→ L𝜔z lies in𝔊.
[D]
∫

𝛺 ∥L𝜔 ∥2𝜇 (𝑑𝜔) < +∞.

Problem 5.3. Suppose that Assumptions 3.6 and 5.2 are in force, and let W : G → 2G be maximally
monotone. The objective is to

find z ∈ G such that 0 ∈ Wz +
∫

𝛺

L∗𝜔
(
A𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔) . (5.5)

In traditional variational methods, duality provides a powerful framework to analyze and solve
minimization problems [3, 21, 35]. More generally, for inclusion problems, notions of duality have
been proposed at various levels of generality [10, 17, 31, 33] in the context of Example 2.1(i), which
corresponds to the inclusion problem

find z ∈ G such that 0 ∈ Wz +
𝑝∑︁

𝑘=1
L∗
𝑘

(
A𝑘 (L𝑘z)

)
. (5.6)

The next theorem extends duality concepts to the general setting of Problem 5.3.
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Theorem 5.4. Consider the setting of Problem 5.3, as well as the dual problem

find 𝑥∗ ∈ H such that
(
∃ z ∈ W−1

(
−
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

))
(∀𝜇𝜔 ∈ 𝛺) L𝜔z ∈ A−1

𝜔

(
𝑥∗(𝜔)

)
, (5.7)

and denote by Z and 𝑍 ∗ the sets of solutions to (5.5) and (5.7), respectively. Let K be the Kuhn–Tucker
operator associated to Problem 5.3, that is,

K : G ⊕ H → 2G⊕H

(z, 𝑥∗) ↦→
(
Wz +
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

)
×
(
−𝔢Lz +

𝔊∫ ⊕

𝛺

A−1
𝜔

(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

)
,

(5.8)

and let S be the saddle operator associated to Problem 5.3, that is,

S : G ⊕ H ⊕ H → 2G⊕H⊕H

(z, 𝑥,𝑢∗) ↦→
(
Wz +
∫

𝛺

L∗𝜔
(
𝑢∗(𝜔)

)
𝜇 (𝑑𝜔)

)
×
(
𝔊∫ ⊕

𝛺

A𝜔

(
𝑥 (𝜔)

)
𝜇 (𝑑𝜔) − 𝑢∗

)
×
(
−𝔢Lz + 𝑥

)
.

(5.9)

Then the following hold:

(i) K and S are maximally monotone.
(ii) zerK and zerS are closed and convex.
(iii) Let (z, 𝑥∗) ∈ G ×H . Then (z, 𝑥∗) ∈ zerK⇒ (z, 𝑥∗) ∈ Z × 𝑍 ∗.
(iv) Let (z, 𝑥,𝑢∗) ∈ G ×H ×H . Then (z, 𝑥,𝑢∗) ∈ zerS⇒ (z, 𝑢∗) ∈ Z × 𝑍 ∗.
(v) zerS ≠ ∅⇔ zerK ≠ ∅⇔ 𝑍 ∗ ≠ ∅⇒ Z ≠ ∅.

Proof. Set

𝐴 =
𝔊∫ ⊕

𝛺

A𝜔𝜇 (𝑑𝜔) . (5.10)

Theorem 3.8(i) states that

𝐴 is maximally monotone, (5.11)

while Proposition 3.2(iv) states that

𝐴−1 =
𝔊∫ ⊕

𝛺

A−1
𝜔 𝜇 (𝑑𝜔) . (5.12)

Moreover, in view of Assumption 5.2, items (ii) and (v) of Proposition 3.12 imply that the operator

𝐿 : G → H : z ↦→ 𝔢Lz (5.13)

is well defined, linear, and bounded, with adjoint

𝐿∗ : H → G : 𝑥∗ ↦→
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔) . (5.14)

Hence, we deduce from (5.8) that

K : G ⊕ H → 2G⊕H : (z, 𝑥∗) ↦→
(
Wz + 𝐿∗𝑥∗

)
×
(
−𝐿z +𝐴−1𝑥∗

)
(5.15)
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and from (5.9) that

S : G ⊕ H ⊕ H → 2G⊕H⊕H : (z, 𝑥,𝑢∗) ↦→
(
Wz + 𝐿∗𝑢∗

)
× (𝐴𝑥 − 𝑢∗) ×

{
−𝐿z + 𝑥

}
. (5.16)

Additionally, the dual problem (5.7) can be rewritten as

find 𝑥∗ ∈ H such that 0 ∈ −𝐿
(
W−1(−𝐿∗𝑥∗)

)
+𝐴−1𝑥∗. (5.17)

(i): In view of (5.11) and the maximal monotonicity of W, it follows from (5.15) and [3, Proposi-
tion 26.32(iii)] that K is maximally monotone, and from (5.16) and [9, Lemma 2.2(ii)] that S is maxi-
mally monotone.
(ii): Combine (i) and [3, Proposition 23.39].
(iii): Suppose that (z, 𝑥∗) ∈ zerK. Then, by (5.15), 𝐿z ∈ 𝐴−1𝑥∗ or, equivalently, 𝑥∗ ∈ 𝐴(𝐿z).

Therefore, it follows from (5.13), Assumption 5.2[C], and (5.10) that, for 𝜇-almost every 𝜔 ∈ 𝛺 ,
𝑥∗(𝜔) ∈ A𝜔 (L𝜔z) and, in turn, that L∗𝜔 (𝑥∗(𝜔)) ∈ L∗𝜔 (A𝜔 (L𝜔z)). Hence, because Proposition 3.12(iv)
asserts that the mapping 𝛺 → G : 𝜔 ↦→ L∗𝜔 (𝑥∗(𝜔)) is 𝜇-integrable, we infer from (5.8) and (2.4) that

0 ∈ Wz +
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔) ⊂ Wz +

∫

𝛺

L∗𝜔
(
A𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔) . (5.18)

Finally, since (z, 𝑥∗) ∈ zerK, it follows from [3, Proposition 26.33(ii)] that 𝑥∗ solves (5.17) and, there-
fore, (5.7).
(iv): Argue as in (iii).
(v): By virtue of (5.15), (5.16), and (5.17), the equivalences zerS ≠ ∅⇔ zerK ≠ ∅⇔ 𝑍 ∗ ≠ ∅ follow

from [9, Lemma 2.2(iv)], while the implication zerK ≠ ∅⇒ Z ≠ ∅ follows from (iii).

Remark 5.5. Consider the setting of Theorem 5.4, and define 𝐴 as in (5.10) and 𝐿 as in (5.13).

(i) zer(W + 𝐿∗ ◦𝐴 ◦ 𝐿) is a subset of Z which, in general, is proper.
(ii) According to Theorem 5.4(iii)–(iv), to solve (5.5) and its dual (5.7), it is enough to find a zero

of the operator K of (5.8) or of the operator S of (5.9). This can be achieved by using splitting
algorithms [16]. For instance, to find a zero of S, each operator A𝜔 is decomposed as A𝜔 =

Am
𝜔 + Ac

𝜔 + Al
𝜔 , where Am

𝜔 : H𝜔 → 2H𝜔 is maximally monotone, Ac
𝜔 : H𝜔 → H𝜔 is cocoercive,

and Al
𝜔 : H𝜔 → H𝜔 is monotone and Lipschitzian. Thus, 𝐴 is decomposed as

𝐴 =
𝔊∫ ⊕

𝛺

Am
𝜔 𝜇 (𝑑𝜔) +

𝔊∫ ⊕

𝛺

Ac
𝜔𝜇 (𝑑𝜔) +

𝔊∫ ⊕

𝛺

Al
𝜔𝜇 (𝑑𝜔) . (5.19)

One can then employ the algorithmof [16, Section 8.5]. It requires the resolvent of𝔊
∫ ⊕
𝛺 Am

𝜔 𝜇 (𝑑𝜔),
which can be implemented via Theorem 3.8(ii)(a), as well as Euler steps on 𝔊∫ ⊕

𝛺 Ac
𝜔𝜇 (𝑑𝜔) and

𝔊∫ ⊕
𝛺 Al

𝜔𝜇 (𝑑𝜔), which can be implemented via Proposition 3.4(i)–(ii).

We conclude the paper by providing a few illustrations of Problem 5.3 and the proposed duality
framework; see [12] for further applications.

Example 5.6. In the setting of Example 2.1(i), the primal inclusion (5.5) reduces to (5.6) and Theo-
rem 5.4 specializes to results found in [10, Proposition 1].
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Example 5.7. Suppose that Assumptions 4.6 and 5.2 are in force, let g ∈ 𝛤0(G), and suppose that
there exists 𝑧∗ ∈ ℌ such that(

∃w ∈ 𝜕g∗
(
−
∫

𝛺

L∗𝜔
(
𝑧∗(𝜔)

)
𝜇 (𝑑𝜔)

))
(∀𝜇𝜔 ∈ 𝛺) L𝜔w ∈ 𝜕f∗𝜔

(
𝑧∗(𝜔)

)
. (5.20)

Now set W = 𝜕g and (∀𝜔 ∈ 𝛺) A𝜔 = 𝜕f𝜔 . Then it follows from Theorem 4.7, Proposition 3.12, and
standard convex calculus that every solution to the primal problem (5.5) solves

minimize
z∈G

g(z) +
∫

𝛺

f𝜔
(
L𝜔z

)
𝜇 (𝑑𝜔), (5.21)

and every solution to the dual problem (5.7) solves

minimize
𝑥∗∈H

g∗
(
−
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

)
+
∫

𝛺

f∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔). (5.22)

A noteworthy instance is when 𝜇 is a probability measure and, for every𝜔 ∈ 𝛺 ,H𝜔 = G and L𝜔 = IdG.
In this setting, (5.21) describes a standard stochastic optimization problem [29]. Our setting makes it
possible to extend such stochastic problems to composite ones involving functions acting on different
spaces (H𝜔 )𝜔∈𝛺 .

Example 5.8. Suppose that Assumption 5.2 is in force, let W : G → 2G be maximally monotone,
and, for every 𝜔 ∈ 𝛺 , let B𝜔 : H𝜔 → 2H𝜔 be maximally monotone. Additionally, suppose that
dom𝔊∫ ⊕

𝛺 B𝜔𝜇 (𝑑𝜔) ≠ ∅ and that, for every 𝑥 ∈ ℌ, the mapping 𝜔 ↦→ 𝐽B𝜔 (𝑥 (𝜔)) lies in 𝔊. Now
let 𝛾 ∈ ]0, +∞[ and set (∀𝜔 ∈ 𝛺) A𝜔 = 𝛾B𝜔 . Then, by Theorem 3.8(ii)(b) and Proposition 3.4(ii), the
family (A𝜔 )𝜔∈𝛺 satisfies Assumption 3.6. Further, the primal problem (5.5) becomes

find z ∈ G such that 0 ∈ Wz +
∫

𝛺

L∗𝜔
(
𝛾B𝜔 (L𝜔z)

)
𝜇 (𝑑𝜔), (5.23)

and the dual problem (5.7) reads

find 𝑥∗ ∈ H such that(
∃ z ∈ W−1

(
−
∫

𝛺

L∗𝜔
(
𝑥∗(𝜔)

)
𝜇 (𝑑𝜔)

))
(∀𝜇𝜔 ∈ 𝛺) L𝜔z ∈ B−1

𝜔

(
𝑥∗(𝜔)

)
+ 𝛾𝑥∗(𝜔). (5.24)

As in the special case discussed in [19, Proposition 4.1], which is set in the context of Example 2.1(i),
the inclusion (5.23) can be shown to be an exact relaxation of the inclusion problem

find z ∈ zerW such that (∀𝜇𝜔 ∈ 𝛺) 𝛾B𝜔 (L𝜔z) = 0 (5.25)

or, equivalently, of the so-called split common zero problem

find z ∈ zerW such that (∀𝜇𝜔 ∈ 𝛺) 0 ∈ B𝜔 (L𝜔z) (5.26)

in the sense that, if (5.26) has solutions, they are the same as those of (5.23). If we further specialize
to the case when 𝜇 is a probability measure, W = 0, and for every 𝜔 ∈ 𝛺 , H𝜔 = G, L𝜔 = IdG, and
B𝜔 = 𝑁C𝜔

, where C𝜔 is a nonempty closed convex subset of G, then (5.26) collapses to the stochastic
convex feasibility problem of [13].
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