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1 Problem formulation

Rockafellar proposed in [21] the important multicommodity network equilibrium model (see (6) in
Problem 2) and studied some of its properties. In the present paper, we devise a flexible numerical
method for solving this problem based on the asynchronous block-iterative decomposition framework
of [8].

The following notion of a network from [20, Section 1A] plays a central role in the formulation of
our problem.

Definition 1 A network consists of nonempty finite sets Nand A— whose elements are called nodes
and arcs, respectively — and a mapping ϑ : A→N×N: j 7→ (ϑ1(j), ϑ2(j)) such that, for every j ∈ A,
ϑ1(j) 6= ϑ2(j). We call ϑ1(j) and ϑ2(j) the initial node and the terminal node of arc j, respectively. In
addition, we set

(∀i ∈N)

{
A+(i) =

{
j ∈ A | node i is the initial node of arc j

}
A−(i) =

{
j ∈ A | node i is the terminal node of arc j

}
.

(1)

Recall that, given a Euclidean space G with scalar product 〈 · | · 〉, an operator A : G → 2G is maxi-
mally monotone if(

∀(x, x∗) ∈ G × G
)

(x, x∗) ∈ graA ⇔
[ (
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0

]
, (2)

where graA =
{

(x, x∗) ∈ G × G | x∗ ∈ Ax
}

is the graph of A. (The reader is referred to [2] for
background and complements on monotone operator theory and convex analysis.) The problem of
interest is the following.
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Problem 2 Under consideration is a network (N,A, ϑ), together with a nonempty finite set C of
commodities transiting on the network. Equip H = RC with the scalar product ((ξk)k∈C, (ηk)k∈C) 7→∑

k∈C ξkηk and let us introduce the spaces{
X =

{
x = (xj)j∈A | (∀j ∈ A) xj = (ξj,k)k∈C ∈ H

}
V =

{
v∗ = (v∗i )i∈N | (∀i ∈N) v∗i = (ν∗i,k)k∈C ∈ H

}
.

(3)

An element x ∈ X is called a flow on the network, where ξj,k is the flux of commodity k on arc j. The
divergence of a flow x ∈ X at node i is

divi x =
∑

j∈A+(i)

xj −
∑

j∈A−(i)

xj . (4)

We refer to an element v∗ ∈ V as a potential on the network, where ν∗i,k is the potential of commodity
k at node i. Given v∗ ∈ V and j ∈ A, the tension (or potential difference) across arc j relative to the
potential v∗ is

∆jv
∗ = v∗ϑ2(j) − v

∗
ϑ1(j). (5)

For every j ∈ A, the flow-tension relation on arc j is modeled by the sum Qj + Rj of maximally
monotone operators Qj : H → 2H and Rj : H → 2H. Further, for every i ∈N, the divergence-potential
relation at node i is modeled by a maximally monotone operator Si : H → 2H. The task is to

find a flow x ∈ X and a potential v∗ ∈ V such that

{
(∀j ∈ A) ∆jv

∗ ∈ Qjxj +Rjxj

(∀i ∈N) divi x ∈ S−1
i v∗i ,

(6)

under the assumption that (6) has a solution.

Remark 3 The pertinence of Problem 2 is demonstrated in [20, Chapter 8] and [21], where it is
shown to capture formulations arising in areas such as traffic assignment, hydraulic networks, and
price equilibrium.

2 A block-iterative decomposition method

Notation. Throughout, G is a Euclidean space. Let A : G → 2G be maximally monotone and let x ∈ G.
Then, in terms of the variable p ∈ G, the inclusion x ∈ p+Ap has a unique solution, which is denoted
by JAx. The operator JA : G → G : x 7→ JAx is called the resolvent of A.

Our algorithm (see (8) in Proposition 4) is derived from [8, Algorithm 12] and it thus inherits the
following attractive features from the framework of [8]:

À No additional assumption, such as Lipschitz continuity or cocoercivity, is imposed on the under-
lying operators.

Á Algorithm (8) achieves full splitting in the sense that the operators (Qj)j∈A, (Rj)j∈A, and (Si)i∈N
are activated independently via their resolvents.

Â Algorithm (8) is block-iterative, that is, at iteration n, only blocks (Qj)j∈An , (Rj)j∈An , and
(Si)i∈Nn of operators need to be activated, where An and Nn are nonempty subsets of Aand N,
respectively. To guarantee convergence of the iterates, the mild sweeping condition (7) below
needs to be fulfilled.
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We denote elements in X and V by bold letters, e.g., qn = (qj,n)j∈A and s∗n = (s∗i,n)i∈N.

Proposition 4 Consider the setting of Problem 2. Let T ∈ N, let (An)n∈N be nonempty subsets of A, and
let (Nn)n∈N be nonempty subsets of N such that A0 = A, N0 = N, and

(∀n ∈ N)
n+T⋃
k=n

Ak = A and
n+T⋃
k=n

Nk = N. (7)

Let (λn)n∈N be a sequence in ]0, 2[ such that infn∈N λn > 0 and supn∈N λn < 2. Moreover, for every j ∈ A

and every i ∈N, let (xj,0, x
∗
j,0, v

∗
i,0) ∈ H3 and (γj , µj , σi) ∈ ]0,+∞[3. Iterate

for n = 0, 1, . . .

for every j ∈ An
l∗j,n = x∗j,n −∆jv

∗
n

qj,n = JγjQj (xj,n − γjl∗j,n)

q∗j,n = γ−1
j (xj,n − qj,n)− l∗j,n

rj,n = JµjRj (xj,n + µjx
∗
j,n)

r∗j,n = x∗j,n + µ−1
j (xj,n − rj,n)

for every j ∈ ArAn⌊
qj,n = qj,n−1; q∗j,n = q∗j,n−1; rj,n = rj,n−1; r∗j,n = r∗j,n−1

for every i ∈Nn
li,n = divi xn
si,n = JσiSi(li,n + σiv

∗
i,n)

s∗i,n = v∗i,n + σ−1
i (li,n − si,n)

ti,n = si,n − divi qn
for every i ∈NrNn⌊
si,n = si,n−1; s∗i,n = s∗i,n−1

ti,n = si,n − divi qn
for every j ∈ A⌊
t∗j,n = q∗j,n + r∗j,n −∆js

∗
n

uj,n = rj,n − qj,n
τn =

∑
j∈A

(
‖t∗j,n‖2 + ‖uj,n‖2

)
+
∑

i∈N‖ti,n‖2
if τn > 0 πn =

∑
j∈A

(
〈xj,n | t∗j,n〉 − 〈qj,n | q∗j,n〉+ 〈uj,n | x∗j,n〉 − 〈rj,n | r∗j,n〉

)
+
∑

i∈N
(
〈ti,n | v∗i,n〉 − 〈si,n | s∗i,n〉

)
θn = λn max{πn, 0}/τn

else⌊
θn = 0

for every j ∈ A⌊
xj,n+1 = xj,n − θnt∗j,n
x∗j,n+1 = x∗j,n − θnuj,n

for every i ∈N⌊
v∗i,n+1 = v∗i,n − θnti,n.

(8)

Then ((xj,n)j∈A, (v
∗
i,n)i∈N)n∈N converges to a solution to (6).

Proof. Let us consider the multivariate monotone inclusion problem
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find x ∈ X , x∗ ∈ X , and v∗ ∈ V such that

{
(∀j ∈ A) ∆jv

∗ − x∗j ∈ Qjxj and xj ∈ R−1
j x∗j

(∀i ∈N) divi x ∈ S−1
i v∗i .

(9)

Then

(∀x ∈ X )(∀v∗ ∈ V) (x,v∗) solves (6)

⇔ (∃x∗ ∈ X )

{
(∀j ∈ A) ∆jv

∗ ∈ Qjxj + x∗j and x∗j ∈ Rjxj
(∀i ∈N) divi x ∈ S−1

i v∗i

⇔ (∃x∗ ∈ X ) (x,x∗,v∗) solves (9). (10)

Therefore, since (6) has a solution, so does (9). Next, define

(∀i ∈N)(∀j ∈ A) εi,j =


1, if node i is the initial node of arc j;
−1, if node i is the terminal node of arc j;
0, otherwise.

(11)

It results from (4) and (1) that

(∀x ∈ X )(∀i ∈N) divi x =
∑
j∈A

εi,jxj , (12)

and from (5) that

(∀v∗ ∈ V)(∀j ∈ A) ∆jv
∗ = −

∑
i∈N

εi,jv
∗
i . (13)

We now verify that (9) is a special case of [8, Problem 1] with the setting I = A, K = A∪N, and for
every j ∈ I and every k ∈ K,

Hj = Gk = H, Aj = Qj , z∗j = rk = 0, and



Bk =

{
Rk, if k ∈ A;

Sk, if k ∈N

Lk,j =


Id, if k = j;

0, if k ∈ A and k 6= j;

εk,jId, if k ∈N.

(14)

We deduce from (12) that

(∀x ∈ X )(∀k ∈ K)
∑
j∈I

Lk,jxj =

{
xk, if k ∈ A;∑

j∈I εk,jxj , if k ∈N

=

{
xk, if k ∈ A;

divk x, if k ∈N,
(15)

and from (13) that

(∀x∗ ∈ X )(∀v∗ ∈ V)(∀j ∈ I)
∑
k∈A

L∗k,jx
∗
k +

∑
k∈N

L∗k,jv
∗
k = x∗j +

∑
k∈N

εk,jv
∗
k = x∗j −∆jv

∗. (16)

Hence, in the setting of (14), (9) is an instantiation of [8, Problem 1] and (8) is a realization of [8,
Algorithm 12], where (∀n ∈ N) In = An and Kn = An ∪Nn. Thus, upon letting

(∀n ∈ N) xn = (xj,n)j∈A, x∗n = (x∗j,n)j∈A, and v∗n = (v∗i,n)i∈N, (17)

we infer from [8, Theorem 13] that (xn,x
∗
n,v

∗
n)n∈N converges to a solution (x,x∗,v∗) to (9). Conse-

quently, (10) asserts that (x,v∗) solves (6).
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Remark 5 Some comments are in order.

(i) One might be tempted to consider (6) as a special case of [8, Problem 1] with the setting I = A,
K = N, and for every j ∈ I and every k ∈ K,

Hj = Gk = H, Aj = Qj +Rj , Bk = Sk, z∗j = rk = 0, and Lk,j = εk,jId, (18)

where (εi,j)i∈N,j∈A are defined in (11), and then specialize [8, Algorithm 12] to (18). However,
this approach necessitates the computation of the resolvents of the operators (Qj + Rj)j∈A,
which cannot be expressed in terms of the resolvents of (Qj)j∈A and (Rj)j∈A in general (see
Examples 7 and 8).

(ii) Algorithm (8) of Proposition 4 requires to evaluate the resolvents of the operators (Qj)j∈A,
(Rj)j∈A, and (Si)i∈N. Illustrations of such calculations are provided in Examples 6–8 and 11–
14.

(iii) Alternate algorithms [7, 9, 19] can also be used to solve (9) and, in turn, (6). Nevertheless, there
are certain restrictions on the resulting algorithms. For example, the method of [7] must activate
all the operators (Qj)j∈A, (Rj)j∈A, and (Si)i∈N at every iteration, while the frameworks of
[9, 19] do not allow for deterministic selections of the blocks (Qj)j∈An , (Rj)j∈An , and (Si)i∈Nn .
Finally, the algorithm resulted from [9] involves the inversion of a linear operator acting on
RMN , where M = cardAand N = card C, which may not be favorable in large-scale problems,
e.g., [12].

Notation. Before proceeding further, let us recall some basic notion of convex analysis (see [2] for de-
tails). Let ϕ : G → ]−∞,+∞] be proper, lower semicontinuous, and convex. The subdifferential of ϕ is
the maximally monotone operator ∂ϕ : G → 2G : x 7→

{
x∗ ∈ G | (∀y ∈ G) 〈y − x | x∗〉+ ϕ(x) 6 ϕ(y)

}
.

For every x ∈ G, the unique minimizer of ϕ + (1/2)‖· − x‖2 is denoted by proxϕx. Let C be a
nonempty closed convex subset of G. The indicator function of C is the proper lower semicontinuous
convex function

ιC : G → [0,+∞] : x 7→

{
0, if x ∈ C;

+∞, otherwise,
(19)

the normal cone operator of C is NC = ∂ιC , and the projector onto C is projC = proxιC .

To motivate the need for monotone operators in the formulation of Problem 2, let us consider the
following example.

Example 6 (Gyrator) The current-voltage relation of an ideal gyrator [22] is modeled by the maxi-
mally monotone operator

Q : R2 → R2 : (ξ1, ξ2) 7→ (−ξ2, ξ1). (20)

We have(
∀γ ∈ ]0,+∞[

)(
∀(ξ1, ξ2) ∈ R2

)
JγQ(ξ1, ξ2) =

1

1 + γ2
(ξ1 + γξ2,−γξ1 + ξ2). (21)

Note that Q is not a subdifferential. Electrical networks with gyrators are considered in [6].

Example 7 (Separable multicommodity flows) Consider the setting of Problem 2 and suppose, in
addition, that the following are satisfied:
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[a] For every j ∈ A, cj : R → 2R is maximally monotone, Cj is a nonempty closed convex subset of
H, Qj maps xj = (ξj,k)k∈C ∈ H to the set

{
(ξ∗j )k∈C | ξ∗j ∈ cj(

∑
k∈C ξj,k)

}
, and Rj = NCj .

[b] For every i ∈N, si ∈ H and S−1
i : H → 2H : v∗i 7→ {si}.

Then (6) reduces to the separable multicommodity flow problem; see, e.g., [3, Section 8.3] and the
references listed in [3, Section 8.9]. Take j ∈ A, i ∈ N, and γ ∈ ]0,+∞[. We have JγRj = projCj

and JγSi = si. To compute JγQj , define L : H → R : (ξk)k∈C 7→
∑

k∈C ξk and set N = card C. Then
L∗ : R → H : ξ 7→ (ξ)k∈C and, therefore, L ◦ L∗ = N Id. At the same time, by [a], Qj = L∗ ◦ cj ◦ L.
Thus, we derive from [2, Proposition 23.25(iii)] that

(
∀xj = (ξj,k)k∈C ∈ H

)
JγQjxj = xj +

1

N

(
JNγcj (Lxj)− Lxj

)
k∈C = (ξj,k + η)k∈C,

where η =

(
JNγcj

(∑
k∈C

ξj,k

)
−
∑
k∈C

ξj,k

)/
N. (22)

Example 8 The separable multicommodity flow problem with arc capacity constraints (see, e.g., [3,
Section 8.3]) is an instantiation of Example 7 with, for every j ∈ A, cj = ∂(φj + ιΩj ), where φj : R→
]−∞,+∞] is a proper lower semicontinuous convex function and Ωj is a nonempty closed interval in
R such that Ωj ∩ domφj 6= ∅. In this setting, it follows from [2, Example 23.3 and Proposition 24.47]
that

(∀j ∈ A)
(
∀γ ∈ ]0,+∞[

)
Jγcj = proxγ(φj+ιΩj

) = projΩj
◦ proxγφj . (23)

Remark 9 Let us compare the realization of (8) in the context of Example 8 to several existing meth-
ods for the problem in Example 8.

(i) The method of [13] requires strict convexity of (φj)j∈A, while [16] considers a specific form of
(φj)j∈A. We do not have such restrictions.

(ii) The analytic center cutting plane framework (see, e.g., [10], [18, Section 4.3.3], and the refer-
ences therein) and the algorithms of [11, 13, 15] involve, at every iteration, potentially complex
subproblems which have no finite termination guarantee. By contrast, (8) requires the simple
subproblem of evaluating (proxγφj )j∈A. As an example, consider the Kleinrock function

φ : R→ ]−∞,+∞] : ξ 7→


ξ

α− ξ
, if ξ < α;

+∞, otherwise,
(24)

where α ∈ ]0,+∞[. Then, for every γ ∈ ]0,+∞[ and every ξ ∈ R, in terms of the variable s ∈ R,
the cubic equation s3 − (2α + ξ)s2 + (α + 2ξ)αs + α(γ − αξ) = 0 has a unique solution s in
]−∞, α[, and proxγφξ = s; see also Examples 11–14.

(iii) At every iteration, (8) activates only a subgroup (φj)j∈An of functions, as opposed to all of them
as in [11, 13, 15, 16] (see also [18] and the references therein).

(iv) The methods of [10, 16] do not guarantee convergence to a solution of the separable multicom-
modity flow problem, whereas (8) produces a sequence which converges to a solution.

Remark 10 Consider the standard traffic assignment problem, that is, the special case of Example 7
where (∀j ∈ A) Cj = [0,+∞[C.
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(i) In [1, Example 4.4], this problem was solved by an application of the forward-backward method
[1, Theorem 2.8], where it is further assumed that, for every j ∈ A, dom cj = R and cj is
Lipschitzian. However, some common operators found in the literature of traffic assignment [4]
do not fulfill this requirement; their resolvents are provided in Examples 11–14.

(ii) The approach of [14], which is an application of the Douglas–Rachford algorithm [17], requires
to compute the projectors onto polyhedral sets of the form

{
(ξj)j∈A ∈ [0,+∞[A | (∀i ∈N)

∑
j∈Aεi,jξj = δi

}
,

where (εi,j)i∈N,j∈A are defined in (11). This results in solving a subproblem with strongly con-
vex quadratic cost at every iteration, and there is no closed-form expression for the solution to
such problem.

(iii) The more general traffic assignment problem considered in [14], where nonseparable monotone
coupling cost operators are used, can be solved via the method of [5, Section 4.1]. However, the
realization of the resulting algorithm in the context of the standard traffic assignment problem
is not block-iterative in the sense of Â.

Example 11 (Bureau of Public Roads capacity operator) Let (α, %, θ, p) ∈ ]0,+∞[4 and define

c : R→ R : ξ 7→

θ
(

1 + α

(
ξ

%

)p)
, if ξ > 0;

θ, if ξ < 0.

(25)

In addition, let γ ∈ ]0,+∞[ and ξ ∈ R. Then the following hold:

(i) Suppose that ξ > γθ. Then, in terms of the variable s ∈ R, the equation αγθsp/%p+s+γθ−ξ = 0
has a unique solution s and Jγcξ = s.

(ii) Suppose that ξ < γθ. Then Jγcξ = ξ − γθ.

Example 12 (Logarithmic capacity operator) Let ω ∈ ]0,+∞[, let θ ∈ [0,+∞[, and define

c : R→ 2R : ξ 7→


{
θ + ln

ω

ω − ξ

}
, if ξ < ω;

∅, if ξ > ω.
(26)

Then (
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ = ω − γW

(
ωγ−1 exp(θ − ξ/γ + ω/γ)

)
, (27)

where W is the Lambert W-function, that is, the inverse of [−1,+∞[→ [−1/e,+∞[ : ξ 7→ ξ exp(ξ).

Example 13 (Traffic Research Corporation capacity operator) Let (α, β, δ, ω) ∈ ]0,+∞[4 and de-
fine

c : R→ R : ξ 7→ δ + α(ξ − ω) +
√
α2(ξ − ω)2 + β. (28)

Then

(
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ =

−
√
γ2α2(ξ − γδ − ω)2 + (2γα+ 1)γ2β + γα(ξ − γδ + ω) + ξ − γδ

2γα+ 1
.

(29)
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Example 14 Let α ∈ ]1,+∞[, let θ ∈ ]0,+∞[, let p ∈ ]0,+∞[, and define

c : R→ R : ξ 7→ θαpξ. (30)

Then (
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ = ξ −

W
(
γθαpξp lnα

)
p lnα

. (31)
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